
World of Chemistry
7th Edition
ISBN: 9780618562763
Author: Steven S. Zumdahl
Publisher: Houghton Mifflin College Div
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.1, Problem 2RQ
Interpretation Introduction
Interpretation: The flaws of the Rutherford model of atom and the reason for its modification is to be written.
Concept Introduction:The Rutherford model of the atom states that the positive charge is centralised in the nucleus with negatively charged particles called electrons orbiting around it.
Expert Solution & Answer

Answer to Problem 2RQ
There were two major flaws in the Rutherford model of atom:
- According to Rutherford model, every atom should have had continuous line spectra but actually atoms have discreet line spectra.
- The Rutherford model could not explain the stability of an atom. If the postulates of this model were considered absolutely correct, most atoms would have been unstable.
Due to these reasons the model had to be changed in order to correct these flaws.
Explanation of Solution
- If all electrons were of same energy level as suggested in Rutherford model, the line emission spectrum of electrons would have been continuous but that is not the case.
- If electrons accelerate around the nucleus, they will lose energy in the form of
electromagnetic radiation and eventually collide with the nucleus making the atom unstable according to Rutherford model. But atoms are generally stable.
Chapter 11 Solutions
World of Chemistry
Ch. 11.1 - Prob. 1RQCh. 11.1 - Prob. 2RQCh. 11.1 - Prob. 3RQCh. 11.1 - Prob. 4RQCh. 11.1 - Prob. 5RQCh. 11.1 - Prob. 6RQCh. 11.2 - Prob. 1RQCh. 11.2 - Prob. 2RQCh. 11.2 - Prob. 3RQCh. 11.2 - Prob. 4RQ
Ch. 11.2 - Prob. 5RQCh. 11.2 - Prob. 6RQCh. 11.3 - Prob. 1RQCh. 11.3 - Prob. 2RQCh. 11.3 - Prob. 3RQCh. 11.3 - Prob. 4RQCh. 11.3 - Prob. 5RQCh. 11.3 - Prob. 6RQCh. 11.4 - Prob. 1RQCh. 11.4 - Prob. 2RQCh. 11.4 - Prob. 3RQCh. 11.4 - Prob. 4RQCh. 11.4 - Prob. 5RQCh. 11.4 - Prob. 6RQCh. 11.4 - Prob. 7RQCh. 11 - Prob. 1ACh. 11 - Prob. 2ACh. 11 - Prob. 3ACh. 11 - Prob. 4ACh. 11 - Prob. 5ACh. 11 - Prob. 6ACh. 11 - Prob. 7ACh. 11 - Prob. 8ACh. 11 - Prob. 9ACh. 11 - Prob. 10ACh. 11 - Prob. 11ACh. 11 - Prob. 12ACh. 11 - Prob. 13ACh. 11 - Prob. 14ACh. 11 - Prob. 15ACh. 11 - Prob. 16ACh. 11 - Prob. 17ACh. 11 - Prob. 18ACh. 11 - Prob. 19ACh. 11 - Prob. 20ACh. 11 - Prob. 21ACh. 11 - Prob. 22ACh. 11 - Prob. 23ACh. 11 - Prob. 24ACh. 11 - Prob. 25ACh. 11 - Prob. 26ACh. 11 - Prob. 27ACh. 11 - Prob. 28ACh. 11 - Prob. 29ACh. 11 - Prob. 30ACh. 11 - Prob. 31ACh. 11 - Prob. 32ACh. 11 - Prob. 33ACh. 11 - Prob. 34ACh. 11 - Prob. 35ACh. 11 - Prob. 36ACh. 11 - Prob. 37ACh. 11 - Prob. 38ACh. 11 - Prob. 39ACh. 11 - Prob. 40ACh. 11 - Prob. 41ACh. 11 - Prob. 42ACh. 11 - Prob. 43ACh. 11 - Prob. 44ACh. 11 - Prob. 45ACh. 11 - Prob. 46ACh. 11 - Prob. 47ACh. 11 - Prob. 48ACh. 11 - Prob. 49ACh. 11 - Prob. 50ACh. 11 - Prob. 51ACh. 11 - Prob. 52ACh. 11 - Prob. 53ACh. 11 - Prob. 54ACh. 11 - Prob. 55ACh. 11 - Prob. 56ACh. 11 - Prob. 57ACh. 11 - Prob. 58ACh. 11 - Prob. 59ACh. 11 - Prob. 60ACh. 11 - Prob. 61ACh. 11 - Prob. 62ACh. 11 - Prob. 63ACh. 11 - Prob. 64ACh. 11 - Prob. 65ACh. 11 - Prob. 66ACh. 11 - Prob. 67ACh. 11 - Prob. 68ACh. 11 - Prob. 69ACh. 11 - Prob. 70ACh. 11 - Prob. 71ACh. 11 - Prob. 72ACh. 11 - Prob. 73ACh. 11 - Prob. 74ACh. 11 - Prob. 1STPCh. 11 - Prob. 2STPCh. 11 - Prob. 3STPCh. 11 - Prob. 4STPCh. 11 - Prob. 5STPCh. 11 - Prob. 6STPCh. 11 - Prob. 7STPCh. 11 - Prob. 8STPCh. 11 - Prob. 9STPCh. 11 - Prob. 10STPCh. 11 - Prob. 11STPCh. 11 - Prob. 12STP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 3) The following molecule, chloral is a common precursor to chloral hydrate, an acetal type molecule that was a first-generation anesthetic. Draw a mechanism that accounts for tis formation and speculate why it does not require the use of an acid catalyst, like most hemiacetal and acetal reaction: (10 pts) H H₂Oarrow_forwardYou are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits. The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder. The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g. QUESTION: Your organisation strives to ensure that >99.97% of bags of umami powder produced conforms to specification. What performance process index value is required to achieve this process yield? Calculate PPK using the following formula: Ppk = (USL – mean)/3 σ Ppk = (mean -LSL)/ 3 σarrow_forwardYou are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits. The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder. The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g. QUESTION: Provide a valid and full justification as to whether you would advise your manager that the process is satisfactory when it is properly adjusted, or would you seek their approval to improve the process?arrow_forward
- You are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits. The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder. The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g. QUESTION: Using all the available information, set the upper and lower specification limits.arrow_forward43) 10.00 ml of vinegar (active ingredient is acetic acid) is titrated to the endpoint using 19.32 ml of 0.250 M sodium hydroxide. What is the molarity of acetic acid in the vinegar? YOU MUST SHOW YOUR WORK. NOTE: MA x VA = MB x VBarrow_forward424 Repon Sheet Rates of Chemical Reactions : Rate and Order of 1,0, Deception B. Effect of Temperature BATH TEMPERATURE 35'c Yol of Oh نام Time 485 Buret rend ing(n) 12 194 16. 6 18 20 10 22 24 14 115 95 14738 2158235 8:26 CMS 40148 Total volume of 0, collected Barometric pressure 770-572 ml mm Hg Vapor pressure of water at bath temperature (see Appendix L) 42.2 Slope Compared with the rate found for solution 1, there is Using the ideal gas law, calculate the moles of O; collected (show calculations) times faster 10 Based on the moles of O, evolved, calculate the molar concentration of the original 3% 1,0, solution (sho calculations)arrow_forward
- Steps and explanations pleasearrow_forwardUse diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY