
(a)
Interpretation:
Valence electrons of sodium with
Concept introduction:
Electronic configuration can be assigned to any elements in ground when they follow certain rules like Hund rule, Pauli Exclusion Principle and Aufbau rule. If
No two electrons in an atom can have same group of four quantum numbers and this is Pauli Exclusion Principle.
While filling of orbital’s, electron first enters to each energy level with degenerate energy before paring of electron begins and this is Hund’s rules.
(a)

Answer to Problem 40A
Since
Explanation of Solution
As per Aufbau rule electrons are filled in lower energy orbitals that are closer to the nucleus before they are filled in higher energy ones. The order of orbital arranged in their increasing energies is as follows:
So complete electronic configuration of sodium with
Since
(b)
Interpretation:
Valence electrons of calcium with
Concept introduction:
Electronic configuration can be assigned to any elements in ground when they follow certain rules like Hund rule, Pauli Exclusion Principle and Aufbau rule. If atomic number of an element is
No two electrons in an atom can have same group of four quantum numbers and this is Pauli Exclusion Principle.
While filling of orbital’s, electron first enters to each energy level with degenerate energy before paring of electron begins and this is Hund’s rules.
(b)

Answer to Problem 40A
Since
Explanation of Solution
As per Aufbau rule electrons are filled in lower energy orbitals that are closer to the nucleus before they are filled in higher energy ones. The order of orbital arranged in their increasing energies is as follows:
So complete electronic configuration of calcium with
Since
(c)
Interpretation:
Valence electrons of iodine with
Concept introduction:
Electronic configuration can be assigned to any elements in ground when they follow certain rules like Hund rule, Pauli Exclusion Principle and Aufbau rule. If atomic number of an element is
No two electrons in an atom can have same group of four quantum numbers and this is Pauli Exclusion Principle.
While filling of orbital’s, electron first enters to each energy level with degenerate energy before paring of electron begins and this is Hund’s rules.
(c)

Answer to Problem 40A
Since
Explanation of Solution
As per Aufbau rule electrons are filled in lower energy orbitals that are closer to the nucleus before they are filled in higher energy ones. The order of orbital arranged in their increasing energies is as follows:
So complete electronic configuration of iodine with
Since
(d)
Interpretation:
Valence electrons of nitrogen with
Concept introduction:
Electronic configuration can be assigned to any elements in ground when they follow certain rules like Hund rule, Pauli Exclusion Principle and Aufbau rule. If atomic number of an element is
No two electrons in an atom can have same group of four quantum numbers and this is Pauli Exclusion Principle.
While filling of orbital’s, electron first enters to each energy level with degenerate energy before paring of electron begins and this is Hund’s rules.
(d)

Answer to Problem 40A
Since
Explanation of Solution
As per Aufbau rule electrons are filled in lower energy orbitals that are closer to the nucleus before they are filled in higher energy ones. The order of orbital arranged in their increasing energies is as follows:
So complete electronic configuration of nitrogen with
Since
Chapter 11 Solutions
World of Chemistry
- Use diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward15) Create Lewis structure Br Brarrow_forward
- LIOT S How would you make 200. mL of a 0.5 M solution of CuSO4 5H2O from solid copper (II) sulfate? View Rubricarrow_forwardSteps and explantions pleasearrow_forwardMatch the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forward
- Can you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forward
- consider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forwardWhat are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





