(a)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of krypton, Kr is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The
Answer to Problem 1.79E
The molar volumes of (a) krypton, Kr is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for Krypton a = 2.318 atm L2/mol2;
b = 0.03978 L/mol
Boyle temperature,
Molar volume for krypton
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p+ an2/V2] Correction term introduced for molecular attraction
[V– nb] correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for Krypton a =
Boyle temperature
=
= 711.04 K
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of krypton the molar volume is, at one bar pressure
Using the van der Waals constants given in Table 1.6, the molar volumes of krypton, Kr is calculated at 25 °C and 1 bar pressure.
(b)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of (b) ethane, C2H6 is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The ideal
Answer to Problem 1.79E
The molar volumes of ethane, C2H6 is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for ethane a = 5.489 atm L2/mol2;
b = 0.0638 L/mol
Boyle temperature Tb = a/bR = 1049.5 K
Molar volume for ethane ῡ = RT/p = 87.2 L
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p + an2/V2] Correction term introduced for molecular attraction
[V – nb] Correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for ethane a = 5.489 atm L2/mol2
b = 0.0638 L/mol
Boyle temperature Tb = a/bR
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of ethane the molar volume is, at one bar pressure
ῡ = RT/p
Using the van der Waals constants given in Table 1.6, the molar volumes of ethane, C2H6 is calculated at 25 °C and 1 bar pressure.
(c)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of mercury Hg is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. This works importantly well for gases at dilution and at low pressure in many experimental calculations. But the gas molecules are not performing as point masses, and there are situations where the properties of the gas molecules have measurable effect by experiments. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.79E
The molar volumes of mercury is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for mercury a = 8.093atm L2/mol2;
b = 0.01696 L/mol
Boyle temperature Tb = a/bR = 5822 K
Molar volume for mercury ῡ = RT/p = 484 L
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p + an2/V2] Correction term introduced for molecular attraction
[V – nb] Correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for mercury a = 8.093atm L2/mol2;
b = 0.01696 L/mol
Boyle temperature Tb = a/bR
= (8.093 atm L2 mol-2)/(0.01696 L mol-1 x 0.08205 L. atm K-1 mol-1
= 5822 K
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of mercury the molar volume is, at one bar pressure
ῡ = RT/p
Using the van der Waals constants given in Table 1.6, the molar volumes of mercury Hg is calculated at 25 °C and 1 bar pressure.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- Given that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardAt the critical point for carbon dioxide, the substance is very far from being an ideal gas. Prove this statement by calculating the density of an ideal gas in g/cm3 at the conditions of the critical point and comparing it with the experimental value. Compute the experimental value from the fact that a mole of CO2 at its critical point occupies 94 cm3.arrow_forwardWhat is the van der Waals constant a for Ne in units of bar.cm6/mol2arrow_forward
- Scottish physicist W. J. M. Rankine proposed an absolute temperature scale based on the Fahrenheit degree, now called degree Rankine abbreviated R and used by some engineering fields. If a degree Rankine is 5/9 of a degree Kelvin, what is the value of the ideal gas law constant in L. atm/mol. R?arrow_forwardWhat properties of a nonideal gas do the Vander Waals constants represent?arrow_forwardThe gas in the discharge cell of a laser contains (in mole percent) 11% CO2, 5.3% N2, and 84% He. (a) What is the molar mass of this mixture? (b) Calculate the density of this gas mixture at 32C and 758 mm Hg. (c) What is the ratio of the density of this gas to that of air (MM=29.0g/mol)at the same conditions?arrow_forward
- 5-107 If 60.0 g of NH3 occupies 35.1 L under a pressure of 77.2 in. Hg, what is the temperature of the gas, in °C?arrow_forwardTarget check For each of the macroscopic charcateristics unique to the gas phase of matter described in section 4.1-a compressibility, b expandability, c low density, d may be mixed in a fixed volume, and e uniform, constant pressure on container walls-describe how a postulate of the kinetic molecular theory explains the reason for the characteristic.arrow_forwardIn the anaerobic oxidation of glucose by yeast, CO2 is produced: If 1.56 L of CO2 were produced at 22.0 C and 0.965 atm, what mass of C6H12O6 is consumed by the yeast? Assume the ideal gas law applied.arrow_forward
- A sample of a smoke stack emission was collected into a 1.25-L tank at 752 mm Hg and analyzed. The analysis showed 92% CO2, 3.6% NO, 1.2% SO2, and 4.1% H2O by mass. What is the partial pressure exerted by each gas?arrow_forwardA 1.00 L rigid cylinder contains one mole of neon gas at 25 °C. Calculate the pressure using (a) the ideal gas law, and (b) the van der Waals equation. (c) A much more accurate equation is the virial equation, RT Vm= 1+ B(T) C(T) where B(T) and C(T) are functions of temperature. For neon at 25°C, the values of B(T) and C(T) are 11.42 cm mol and 221 cm mol-2, respectively. Assuming the pressure calculated using the virial equation is the "true" value, determine the percent error by using ideal gas law and van der Waals equation.arrow_forward(a) An ideal gas occupies a volume of 2.2 cm3 at 20°C and atmospheric pressure. Determine the number of molecules of gas in the container. (b) If the pressure of the 2.2-cm3 volume is reduced to 2.6 ✕ 10−11 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning