![Physical Chemistry](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_largeCoverImage.gif)
Numerically evaluate for one mole of methane acting as a van der Waals gas at (a) T = 298 K and V = 25.0 L and (b) T = 1000 K and V = 250.0 L. Comment on which set of conditions yields a number closer to that predicted by the
![Check Mark](/static/check-mark.png)
(a)
Interpretation:
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.51E
Explanation of Solution
The ideal gas equation can be represented as;
PV = nRT …(1)
Notably, the van Waals equation improves the ideal gas law by adding two significant terms in the ideal gas equation: one term is to account for the volume of the gas molecules and another term is introduced for the attractive forces between them. The non-ideal gas equation represented as;
In the above equation,
‘a’ and ‘b’ are called as van der Waals constants
Rearranging equation (2) we get pressure p of real gas as,
On differentiation with respect to volume V, at constant T, n we get
Given for methane,
Number of moles = n = 1 mole
Temperature of gas = T = 298 K
Volume of gas = V = 25.0 L
Value of constant ‘a’ for methane = 2.253atmL2/mol2
Value of constant ‘b’ for methane = 0.0428 L/mol
Substituting the values in equation (4), we get,
Besides, differentiating the equation (1) for ideal gas with respect to volume V, we get
Substituting the given parameters for methane in equation (5), we get for ideal gas
25.0 L is calculated as -0.0395 atm/L
![Check Mark](/static/check-mark.png)
(b)
Interpretation:
T = 1000 K and V = 250.0 L.
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.51E
250.0 L is calculated as -0.0013 atm/L
Explanation of Solution
The ideal gas equation can be represented as;
PV = nRT … (1)
The non-ideal gas equation represented as;
In the above equation,
‘a’ and ‘b’ are called as van der Waals constants.
Rearranging equation (2) we get pressure P of real gas as,
On differentiation with respect to volume V, at constant T, n we get
Given for methane,
Number of moles = n = 1 mole
Temperature of gas = T = 1000 K
Volume of gas = V = 250.0 L
Value of constant ‘a’ for methane = 2.253atmL2/mol2
Value of constant ‘b’ for methane = 0.0428 L/mol
Substituting the values in equation (4), we get,
Besides, differentiating the equation (1) for ideal gas with respect to volume V, we get
Substituting the given parameters for methane in equation (5), we get for ideal gas,
Non-ideal gas value is in close proximity to ideal gas values.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- Don't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward* How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forward
- You are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forwardPredict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forwardHow exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forward
- A researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forwardCreate a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forward
- In addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forwardBriefly describe a eutectic system.arrow_forward13.53 Draw all stereoisomers formed when each compound is treated with HBr in the presence of peroxides. a. b. C.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)