Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 1, Problem 1.64E
Show that κ = (T/p)α for an ideal gas.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Calculate V−1(∂V/∂T)p,n for an ideal gas?
1.30. Determine the expressions for the following, assuming
that the ideal gas law holds.
(a)
(b)
(с)
(d)
an
aV
ат
T,p
др/v,n
an
ат
p,V
др
an T,V
f
A7. (a) Given that for an ideal gas
(0)
AG=nRT In
aG
ap
=V, show that for a change in pressure from P₁ to P₂
ompression of two
Chapter 1 Solutions
Physical Chemistry
Ch. 1 - A bomb calorimeter is a study metal vessel in...Ch. 1 - Difference between the system and the...Ch. 1 - Prob. 1.3ECh. 1 - Prob. 1.4ECh. 1 - Prob. 1.5ECh. 1 - Prob. 1.6ECh. 1 - Prob. 1.7ECh. 1 - A pot of cold water is heated on a stove, and when...Ch. 1 - hat difference is necessary for heat to flow...Ch. 1 - What is the value of FT for a sample of gas whose...
Ch. 1 - What is the value of FP for a sample of gas whose...Ch. 1 - Prob. 1.12ECh. 1 - Hydrogen gas is used in weather balloon because it...Ch. 1 - Prob. 1.14ECh. 1 - A 2.0 L soda bottle is pressurized with 4.5 atm of...Ch. 1 - The Mount Pinatubo volcano eruption in 1991...Ch. 1 - Prob. 1.17ECh. 1 - Scottish physicist W. J. M. Rankine proposed an...Ch. 1 - Use the two appropriate values of R to determine a...Ch. 1 - Prob. 1.20ECh. 1 - Pressures of gases in mixtures are referred to as...Ch. 1 - Earths atmosphere is approximately 80 N2 and 20...Ch. 1 - The atmospheric surface pressure on Venus is 90...Ch. 1 - Prob. 1.24ECh. 1 - Prob. 1.25ECh. 1 - In the anaerobic oxidation of glucose by yeast,...Ch. 1 - What are the slopes of the following lines at the...Ch. 1 - For the following function, evaluate the...Ch. 1 - Determine the expressions for the following,...Ch. 1 - Determine the expressions for the following,...Ch. 1 - Prob. 1.31ECh. 1 - Prob. 1.32ECh. 1 - Prob. 1.33ECh. 1 - Prob. 1.34ECh. 1 - What properties of a nonideal gas do the Vander...Ch. 1 - Prob. 1.36ECh. 1 - Prob. 1.37ECh. 1 - Calculate the Boyle temperatures for carbon...Ch. 1 - Prob. 1.39ECh. 1 - Prob. 1.40ECh. 1 - Table 1.4 show that the second virial coefficient...Ch. 1 - Prob. 1.42ECh. 1 - What is the van der Waals constant a for Ne in...Ch. 1 - Prob. 1.44ECh. 1 - Under what conditions would the van der Waals...Ch. 1 - By definition, the compressibility of an ideal gas...Ch. 1 - The second virial coefficient B and the third...Ch. 1 - Use the approximation 1 x-1 1 x x2 to...Ch. 1 - Why is nitrogen a good choice for the study of...Ch. 1 - Evaluate for a gas following the Redlich-Kwong...Ch. 1 - Numerically evaluate for one mole of methane...Ch. 1 - Under what conditions of volume does a van der...Ch. 1 - At high temperatures, one of the van der Waals...Ch. 1 - Under what conditions of temperature does a...Ch. 1 - The Berthelot equation of state for one mole of...Ch. 1 - Prob. 1.56ECh. 1 - Referring to exercises 1.6 and 1.7, does it matter...Ch. 1 - Prob. 1.58ECh. 1 - Use Figure 1.11 to construct the cyclic rule...Ch. 1 - Prob. 1.60ECh. 1 - Prob. 1.61ECh. 1 - Calculate for one mole of an ideal gas at STP and...Ch. 1 - Prob. 1.63ECh. 1 - Show that = T/p for an ideal gas.Ch. 1 - Determine an expression for V/T p, n in terms of ...Ch. 1 - Prob. 1.66ECh. 1 - Prob. 1.67ECh. 1 - Perform a units analysis on the exponent of the...Ch. 1 - Using the barometric formula, calculate the...Ch. 1 - The barometric formula can also be used for...Ch. 1 - Prob. 1.71ECh. 1 - Prob. 1.72ECh. 1 - Prob. 1.73ECh. 1 - Prob. 1.74ECh. 1 - Prob. 1.75ECh. 1 - Prob. 1.76ECh. 1 - Prob. 1.77ECh. 1 - Prob. 1.78ECh. 1 - Prob. 1.79ECh. 1 - Use the ideal gas law to symbolically prove the...Ch. 1 - Prob. 1.81E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- At the critical point for carbon dioxide, the substance is very far from being an ideal gas. Prove this statement by calculating the density of an ideal gas in g/cm3 at the conditions of the critical point and comparing it with the experimental value. Compute the experimental value from the fact that a mole of CO2 at its critical point occupies 94 cm3.arrow_forwardWhat are the numerical values of the heat capacities c-v and c-p of a monatomic ideal gas,in units of cal/mol.K and L.atm/mol.K?arrow_forwardUse the data in Table 2.2 to determine Hp T for Ar at 0C and 1atm. Make any reasonable assumptions necessary.arrow_forward
- In the equation w = P V, why is there a negative sign?arrow_forwardA high pressure gas canister bursts. When the debris is cleared, frost is found to have formed on the metal. A scientist decides to use the ideal gas law to find out how much the temperature of the gas changed when the cylinder burst. Why is this approach incorrect? A They don't know the number of moles of the gas. (B) The gas was being stored as a compressed liquid. C The expansion was adiabatic. (D) The expansion was isothermal.arrow_forward(*), (*): P Use the Euler and reciprocal relations to show that it is equivalent to Cp - Cy = T Ср - Cv = −T. Сү = -Т. Әр ат av 2 T (1) (2) Use this expression to evaluate Cр - Cv for (1) an ideal gas, and (2) for a van der Waals gas.arrow_forward
- (7) Combustion of CH4 and H₂. For 100 g mol of a gas mixture of 75 mol % CH4 and 25 mol % H₂, calculate the total heat of combustion of the mixture at 298 K and 101.32 kPa, assuming that combustion is complete.arrow_forwardCalculate the value of cp at 298 K and 1 atm pressure predicted for Cl, and NO, by the classical equipartition theorem. (Enter your answers to at least two decimal places.) Cp(Cl)) = J mol 1 K1 Cp(NO,) = J mol K1 The actual heat capacities of C and NO, are 33.91 and 36.97 J molK, respectively. Calculate the fraction (expressed as a percentage) of the measured value that arises from vibrational motions. vibrational contribution to cp(Cl,) = vibrational contribution to cp(NO,) =arrow_forwardthe ionic compound L2O3(s) is the ionic compound formed from oxygen and a metal with the form L(s) at 1.00 bar and 298 K. (a) Draw the Lewis structure for L2O3. Assume that all the valence electrons from L are required. (b) Use the following information to determine the enthalpy of formation for L2O3(s). Express your answer in kJZ(mol L2O3(s)). Lattice energy for L2O3(s) = -14836 kJ mol1 AHsub for L(s) = 358 kJ mol 1 First ionization energy for L(g) = 577 kJ mol 1 Second ionization energy for L(g) = 1794 kJ mol 1 Third ionization energy for L(g) = 3820 kJ mol 1 Bond dissociation energy for O2(g) = 498 kJ mol 1 %3D First electron affinity for O = -141 kJ mol 1 Second electron affinity for O = 744 kJ mol 1arrow_forward
- 1.3 (a) To what temperature must a 1.0 L sample of a perfect gas be cooled from 25 °C in order to reduce its volume to 100 cm³?arrow_forward3. Using the definition of isothermal compressibility (K): 1 (av -= (+)₂, ӘР T Solve for K for an ideal gas. Karrow_forwardAssume N₂ behaves as perfect gas. It expands reversibly and adiabatically from Vi to Vf with the pressure change from pi to pf. (a) Derive the temperature versus volume relationship and the pressure and volume relationship for this expansion. (b) When a sample of N₂ of mass 3.12 g at 23.0 °C is allowed to expand reversibly and adiabatically from 4.00 × 10² cm3 to 2.00 dm3, what is the work done by the gas?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY