
(a)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (a) 200 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)
(b)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (b) 500 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)
(c)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (c) 200 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)

Trending nowThis is a popular solution!

Chapter 1 Solutions
Physical Chemistry
- Pls help.arrow_forward16) A 2.0 L flask containing 2.0 x 10-3 mol H2(g), 3.0 x 10-3 mol Cl2(g), and 4.0 x 10-3 mol HCl(g) at equilibrium. This system is represented by the following chemical equation: H2 (g) + Cl2 (g) → 2HCl(g) Calculate the equilibrium constant for this reaction.arrow_forward7) The pH of a 0.05M solution of HCl(aq) at 25°C is a. 1.3 b. 2.3 c. 3.3 d. 12.7arrow_forward
- 11) The Ksp expression for copper (II) sulfate is: a. [Cu2+][SO4²¯] b. [Cu²+]² [SO4²]² c. [Cu²+]²[SO4²] d. [CuSO4] 12) Which of the following is true about a chemical system in equilibrium? a. All chemical reactions have stopped b. The concentration of reactants is equal to the concertation of products c. The forward and reverse reaction rates become equal d. The system will remain at equilibrium regardless of any external factorsarrow_forward21) Explain the difference between the rate of a reaction and the extent of a reaction. Why are both of these concepts important, if you are a chemical engineer that is trying to develop a process to produce a large volume of a specific type of chemical compound?arrow_forwardPls help.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





