
Concept explainers
Pressures of gases in mixtures are referred to as partial pressures and are additive. 1.00 L of He gas at 0.75 atm is mixed with 2.00 L of Ne gas at 1.5 atm at a temperature of 25.0 °C to make a total volume of 3.00 L of a mixture. Assuming no temperature change and that He and Ne can be approximated as ideal gases, what are (a) the total resulting pressure, (b) the partial pressures of each component, and (c) the mole fractions of each gas in the mix?

(a)
Interpretation:
Pressure of gases in mixtures are referred to as partial pressures are additive. 1.00 L of He gas at 0.75 atm is mixed with 200 L of Ne gas at 1.5 atm at a temperature of 25.0 °C to make a total volume of 3.00 L of a mixture. Assuming no temperature change and that He and Ne can be approximated as ideal gases, (a) the total resulting pressure is to be calculated.
Concept introduction:
In physical sciences, the pressure is defined as the perpendicular force acting per unit area (or) the stress at a point within a confined fluid. The symbol for it is p or P. Dalton's law of partial pressure states the fact that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the individual gases in the mixture. The mole fraction ( X ) of any component of a mixture is the ratio of the number of moles of that component to the total number of moles of all the species present in the mixture. Thus, the composition of a gas mixture can be defined by the mole fractions of the gases present.
Answer to Problem 1.21E
The total resulting pressure of ideals gases is ‘1.25 atm’.
Explanation of Solution
Pressure can be defined as a force acting on per unit area i.e.,
P = F/A,
Where, F = force,
A = area on which the force is acted.
Pressure can be conveniently measured for gases and fluids. The pressure of a liquid or a gas is equal to the density of that liquid multiplied by the acceleration due to gravity and the height of the liquid above the certain point. The standard unit for pressure is Pascal (Pa). Other units of pressure, such as pounds per square inch and bar, are also commonly used. The pressure units can also be expressed in grams-force or kilograms-force per square centimeter, without properly identifying the force units. The standard atmosphere (atm) is approximately equal to typical air pressure at earth mean sea level and is having the value of 101325 Pa. Since, Pressure is most prevalently measured by its tendency to displace a column of liquid in a manometer, it is also expressed as depth of a fluid. For example: Centimeters of water (or) millimeters of mercury.
1 Pa = 1N/m2 = 1 Kg/ms2
The pressure can be calculated as
Pressure = density of a liquid x acceleration due to gravity x height of liquid in the column
P = ρgh……………………………………………………………………(1)
P = Pressure in Pa
ρ = Density of the liquid in Kg/m3
g = acceleration due to gravity which is given by 9.80 m/s2
h = height of a column in m
Total pressure of a ideal gas mixture is given by individual gas partial pressures. i.e., The total resulting pressure of ideals gases in the above gas mixtures is the summation of Partial pressure of Ne and Partial pressure of He.
Total Pressure of ideals gases = Partial pressure of Ne + Partial pressure of He…………..(2)
Given,
Volume of He gas = 1.00 L
Pressure of He gas = 0.75 atm
Volume of Ne gas = 2.00 L
Pressure of Ne gas = 1.5 atm
Temperature of system = 25 °C = 298 K
Total volume of gas mixture = 3.00 L
From the partial pressure calculations of He and Ne we know that partial pressure of He is 0.25 atm and partial pressure of Ne is 1 atm. Substituting the partial pressure values in equation (2), we get the total pressure as,
Total Pressure of ideals gases = Partial pressure of Ne + Partial pressure of He
= 1 atm + 0.25 atm
= 1.25 atm
Thus, the total resulting pressure of ideal gas mixture is 1.25 atm.

(b)
Interpretation:
Pressure of gases in mixtures are referred to as partial pressures are additive. 1.00 L of He gas at 0.75 atm is mixed with 200 L of Ne gas at 1.5 atm at a temperature of 25.0 °C to make a total volume of 3.00 L of a mixture. Assuming no temperature change and that He and Ne can be approximated as ideal gases, (a) the total resulting pressure is to be calculated.
Concept introduction:
In physical sciences, the pressure is defined as the perpendicular force acting per unit area (or) the stress at a point within a confined fluid. The symbol for it is p or P. Dalton's law of partial pressure states the fact that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the individual gases in the mixture. The mole fraction ( X ) of any component of a mixture is the ratio of the number of moles of that component to the total number of moles of all the species present in the mixture. Thus, the composition of a gas mixture can be defined by the mole fractions of the gases present.
Answer to Problem 1.21E
The partial pressure of each component in the ideal gas mixtures is calculated as 1) partial pressure of He is 0.25 atm; 2) partial pressure of Ne is 1 atm.
Explanation of Solution
Pressure can be defined as a force acting on per unit area i.e.,
P = F/A,
Where, F = force,
A = area on which the force is acted.
Dalton's law of partial pressure states the fact that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the individual gases in the mixture. In a mixture of gases, each gas contributes to the total pressure of the mixture and this kind of contribution is denoted as partial pressure. In other words, the partial pressure is the pressure the gas if the gas were in the same volume and temperature by itself. Boyle’s law is described as ‘In a closed system, the absolute pressure exerted by a given mass of an ideal gas is inversely proportional to the volume it occupies if the temperature and amount of gas remain unchanged’.
P Α 1/V…………………………………………………………………..(1)
In other words, at fixed value of number of moles of gas (n)
P. V = F(T)………………………………………………………………(2)
Where,
P = Pressure of the gas
V= Volume of the gas
This equation can also be represented as the product of pressure (P) and volume (V) is a constant for a given mass of gas and this holds if the temperature is constant. On comparing the same substance under two different sets of conditions, the gas law can be modified as,
P1V1 = P2V2………………………………………………………………………………………….(3)
* partial pressure of He is calculated as,
Given,
Volume of He gas = 1.00 L = V1
Pressure of He gas = 0.75 atm = P1
Temperature of system = 25 °C = 298 K
Total volume of gas mixture = 3.00 L = V2
Partial Pressure of He = ? = P2
Substituting the values in equation (3), we get the partial pressure of He as,
P2 = P1V1/V2
= 0.75 atm x 1.00 L / 3.00 L
∴P2 = 0.25 atm
* partial pressure of Ne is calculated as,
Volume of Ne gas = 2.00 L = V1
Pressure of Ne gas = 1.5 atm = P1
Total volume of gas mixture = 3.00 L = V2
Partial Pressure of Ne = ? = P2
Substituting the values in equation (3), we get the partial pressure of Ne as,
P2 = P1V1/V2
= 2 L x 1.5 atm / 3.00 L
∴P2 = 1 atm
The partial pressure of He is 0.25 atm and partial pressure of Ne is 1 atm.

(c)
Interpretation:
Pressure of gases in mixtures are referred to as partial pressures are additive. 1.00 L of He gas at 0.75 atm is mixed with 200 L of Ne gas at 1.5 atm at a temperature of 25.0 °C to make a total volume of 3.00 L of a mixture. Assuming no temperature change and that He and Ne can be approximated as ideal gases, (a) the total resulting pressure is to be calculated.
Concept introduction:
In physical sciences, the pressure is defined as the perpendicular force acting per unit area (or) the stress at a point within a confined fluid. The symbol for it is p or P. Dalton's law of partial pressure states the fact that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the individual gases in the mixture. The mole fraction ( X ) of any component of a mixture is the ratio of the number of moles of that component to the total number of moles of all the species present in the mixture. Thus, the composition of a gas mixture can be defined by the mole fractions of the gases present.
Answer to Problem 1.21E
The mole fraction of He is 0.2 and the mole fraction of Ne is 0.8.
Explanation of Solution
The mole fraction ( X ) of any component of a mixture is the ratio of the number of moles of that component to the total number of moles of all the species present in the mixture.
The mole fraction is a dimensionless quantity, which is having values between 0 and 1. For example, if XA = 0, then there is no A present I the mixture and if XA = 1, then there is only one component i.e., A only. This trend is also applicable to B in the mixture.
the ideal gas equation P1V1 = n1RT
and n1 = P1V1/RT ………………………………….(4)
* the number of moles and mole fraction of He:
Volume of He gas = 1.00 L = V1
Pressure of He gas = 0.75 atm = P1
Temperature of system = 25 °C = 298 K
The gas constant R = 0082 L atm / K. mol
The number of mole of He = n1 = ?
Substituting the values in equation (4), we get
The number of moles of He is 0.03 and the mole fraction of He (XHe) ;
Thus, the mole fraction of He is 0.2.
* the number of moles and mole fraction of Ne:
Volume of Ne gas = 2.00 L = V1
Pressure of Ne gas = 1.5 atm = P1
Temperature of system = 25 °C = 298 K
The gas constant R = 0082 L atm / K. mol
The number of mole of Ne = n1 = ?
Substituting the values in equation (4), we get
The number of moles of Ne is 0.12 and the mole fraction of Ne (XNe);
Thus, the mole fraction of Ne is 0.8.
Thus, the mole fraction of He is 0.2 and the mole fraction of Ne is 0.8.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- Please help me answer this question. I don't understand how or even if this can happen in a single transformation. Please provide a detailed explanation and a drawing showing how it can happen in a single transformation. Add the necessary reagents and reaction conditions above and below the arrow in this organic reaction. If the products can't be made from the reactant with a single transformation, check the box under the drawing area instead.arrow_forward2) Draw the correct chemical structure (using line-angle drawings / "line structures") from their given IUPAC name: a. (E)-1-chloro-3,4,5-trimethylhex-2-ene b. (Z)-4,5,7-trimethyloct-4-en-2-ol C. (2E,6Z)-4-methylocta-2,6-dienearrow_forwardපිපිම Draw curved arrows to represent the flow of electrons in the reaction on the left Label the reactants on the left as either "Acid" or "Base" (iii) Decide which direction the equilibrium arrows will point in each reaction, based on the given pk, values (a) + H-O H 3-H + (c) H" H + H****H 000 44-00 NH₂ (e) i Дон OH Ө NHarrow_forward
- 3) Label the configuration in each of the following alkenes as E, Z, or N/A (for non-stereogenic centers). 00 E 000 N/A E Br N/A N/A (g) E N/A OH E (b) Oz N/A Br (d) 00 E Z N/A E (f) Oz N/A E (h) Z N/Aarrow_forward6) Fill in the missing Acid, pKa value, or conjugate base in the table below: Acid HCI Approximate pK, -7 Conjugate Base H-C: Hydronium (H₂O') -1.75 H-O-H Carboxylic Acids (RCOOH) Ammonium (NH4) 9.24 Water (H₂O) H-O-H Alcohols (ROH) RO-H Alkynes R--H Amines 25 25 38 HOarrow_forward5) Rank the following sets of compounds in order of decreasing acidity (most acidic to least acidic), and choose the justification(s) for each ranking. (a) OH V SH я вон CH most acidic (lowst pKa) least acidic (highest pKa) Effect(s) Effect(s) Effect(s) inductive effect O inductive effect O inductive effect electronegativity electronegativity O electronegativity resonance polarizability resonance polarizability O resonance O polarizability hybridization Ohybridization O hybridization оarrow_forward
- How negatively charged organic bases are formed.arrow_forwardNonearrow_forward1) For the following molecules: (i) Label the indicated alkenes as either cis (Z), trans (E), or N/A (for non-stereogenic centers) by bubbling in the appropriate label on the molecule. (ii) Complete the IUPAC name located below the structure (HINT: Put the letter of the configuration in parentheses at the beginning of the name!) E z N/A ()-3,4,6-trimethylhept-2-ene E Oz O N/A ()-3-ethyl-1-fluoro-4-methylhex-3-ene E -+- N/A Me )-2,3-dimethylpent-2-ene (d) (b) E O N/A Br ()-5-bromo-1-chloro-3-ethyloct-4-ene ОЕ Z N/A Et (___)-3-ethyl-4-methylhex-3-ene E (f) Oz N/A z N/A HO (4.7)-4-(2-hydroxyethyl)-7-methylnona-4,7-dien-2-onearrow_forward
- O 9:21AM Tue Mar 4 ## 64% Problem 51 of 15 Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H :0: CI. AI :CI: :CI: Cl AI Select to Add Arrows Select to Add Arrows O: Cl :CI: :0: H CI: CI CO Select to Add Arrows Select to Add Arrows :O: CI :0: Cl. 10: AIarrow_forward(i) Draw in the missing lone pair(s) of electrons of the reactants on the left (ii) Draw (curved) arrows to show the flow of electrons in the acid/base reaction on the left (iii) Draw the products of the acid/base on the right (iv) Select the correct label for each product as either "conjugate acid" or "conjugate base" (a) JOH OH NH₂ acid base (b) De "H conjugate acid conjugate acid conjugate base conjugate base acid base conjugate acid conjugate base conjugate acid conjugate base acid basearrow_forwardCould someone answer this NMR and explain please Comment on the general features of the 1H-NMR spectrum of isoamyl ester provided below.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




