Interpretation:
Table 1.5 is to be used to list the gases from most ideal to least ideal. The trend or trends obvious from this list are to be found out.
Concept introduction:
An ideal gas is denoted as the one in which there are no intermolecular attractive forces or repulsive forces and in which all collisions between the particles such as atoms or molecules are superlatively elastic. Besides, ideals gases can be visualized as a group of perfectly hard spheres which can collide with each other, but which otherwise will not interact with each other. In contrast, real gases are non-hypothetical gases and its molecules can occupy space and have interactions with each other by adhering the
Answer to Problem 1.42E
The gases can be listed as most ideal to least ideal as follows;
The gases are arranged based on increasing trend of their Boyle temperature.
Explanation of Solution
An ideal gas is denoted as the one in which there are no intermolecular attractive forces or repulsive forces and in which all collisions between the particles such as atoms or molecules are superlatively elastic. Besides, ideals gases can be visualized as a group of perfectly hard spheres which can collide with each other, but which otherwise will not interact with each other. At STP most real gases behave like an ideal gas such as nitrogen, hydrogen, oxygen, noble gases, carbon dioxide. The term ideal is applicable for gas at higher temperature and lower pressure. In these conditions the potential energy due to intermolecular forces becomes less important as compared with the particle’s kinetic energy. Besides, the size of the gas molecules is less significant as compared to the empty space between them. Thus, one mole of an ideal occupies a volume of
The main drawback of ideal gas it is unsuccessful at lower temperatures or higher pressures, where intermolecular forces and molecular size of gases plays a significant role. Importantly, it fails for most heavy gases (ex: refrigerants) and gases having strong intermolecular forces (ex: water vapor) and ideal gas does not elucidate phase transitions. Thus, the deviations from the ideal gas behavior can be best described by the ‘compressibility factor Z’. The ideal gas equation is
In contrast, real gases are non-hypothetical gases and its molecules can occupy space and have interactions with each other by adhering the gas laws. Under most conditions, they gas going with low temperatures and high pressures are called non-ideal gases. In terms of volume, the compressibility of non-ideal gases can be written as;
In terms of volume, the compressibility of non-ideal gas is expressed as
Where B, C, D virial coefficient and the equation is called virial equation of state.
The temperature at which the virial coefficient B becomes zero is called Boyle temperature.
a and b are van der Waals constant. This Boyle temperature is used to arrange the gases based on ideal to non-ideal behavior. The order of gases are as follows;
At lower ideality values the gases behaves as ideal gas and undergoes various reactions that an ideal gas will undergo.
Thus, Table 1.5 is used to list the gases from most ideal to least ideal. The trend or trends obvious from this list are found out.
Want to see more full solutions like this?
Chapter 1 Solutions
Physical Chemistry
- You heat 1.000 quart of water from 25.0C to its normal boiling point by burning a quantity of methane gas, CH4. What volume of methane at 23.0C and 745 mmHg would you require to heat this quantity of water, assuming that the methane is completely burned? The products are liquid water and gaseous carbon dioxide.arrow_forwardDifference between the system and the surroundings. Give examples of both.arrow_forwardExplain why the plot of PV for CO2 differs from that of an ideal gas.arrow_forward
- Consider a mixture of air and gasoline vapor in a cylinder with a piston. The original volume is 40. cm3. If the combustion of this mixture releases 950. J of energy, to what volume will the gases expand against a constant pressure of 650. torr if all the energy of combustion is converted into work to push back the piston?arrow_forwardCalculate G and G at 303 C for the following equation. CO(g, 2 atm) + Cl2 (g, 1 atm) COCl2(g, 0.1 atm)arrow_forwardButane gas, C4H10, is sold to campers as bottled fuel. Its density at 25C and 1.00 atm is 2.38 g/L. What volume of butane gas at 25C and 1.00 atm is required to heat one gallon of water (d=1.00g/mL) from 25C to 98C ? The reaction for the combustion of butane (H f =125.6kJ/mol) is C4H10(g)+132 O2(g)4CO2(g)+5H2O(g)arrow_forward
- Referring to exercises 1.6 and 1.7, does it matter if the pressure difference is caused by an ideal gas or a non-ideal gas? Explain your answer.arrow_forwardRedraw the cylinder in Question 77 after work has been done on the system.arrow_forwardCalculate G and G at 37 C for the following equation. N2O(g, 1 atm) + H2(g, 0.4 atm) N2(g, 1 atm) + H2O()arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning