GR and PPAR are transcription factors that bind to GRE and PPARE sequences respectively and activate transcription of genes. A reporter cell line is created in which the the green fluoresecent protein (GFP) is controlled by a GRE sequence and the pink fluorescent protein mCherry is under control of a PPARE sequence. If the gene for GR is introduced into the reporter cell line, the cells produce a green color. Chimeric proteins are created in which the DNA Binding Domains (DBD) and Activation Domains (AD) of the transcription factors are introduced into various cell lines. Match the following cell-types with the fluorescent color(s) you would expect the cells to produce.
Gene Interactions
When the expression of a single trait is influenced by two or more different non-allelic genes, it is termed as genetic interaction. According to Mendel's law of inheritance, each gene functions in its own way and does not depend on the function of another gene, i.e., a single gene controls each of seven characteristics considered, but the complex contribution of many different genes determine many traits of an organism.
Gene Expression
Gene expression is a process by which the instructions present in deoxyribonucleic acid (DNA) are converted into useful molecules such as proteins, and functional messenger ribonucleic (mRNA) molecules in the case of non-protein-coding genes.
GR and PPAR are transcription factors that bind to GRE and PPARE sequences respectively and activate transcription of genes. A reporter cell line is created in which the the green fluoresecent protein (GFP) is controlled by a GRE sequence and the pink fluorescent protein mCherry is under control of a PPARE sequence. If the gene for GR is introduced into the reporter cell line, the cells produce a green color. Chimeric proteins are created in which the DNA Binding Domains (DBD) and Activation Domains (AD) of the transcription factors are introduced into various cell lines. Match the following cell-types with the fluorescent color(s) you would expect the cells to produce.
![Reporter
Construct
Construct A
Construct B
Construct C
Construct D
Construct E
GR DBD
PPAR
DBD
GRE
GR DBD
PPAR
DBD
GR DBD
GR
AD
PPAR
AD
PPAR
AD
GR
AD
Cell Line B: PPAR DBD/PPAR AF Chimera
Cell Line C GR DBD/PPAR AF Chimera
Cell Line D: GR DBD/PPAR AD
Cell Line E: GR DBD Only
GFP
PPARE
GFP
Cell B
Cell C
Cell D
Cell E
A. GFP
B. mCherry
C. Both GFP and mCherry
D.No Fluorescence
mCherry](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1896aee9-4e1b-4aca-9af3-0b7f8caac28e%2Fa577c72c-f73b-4686-8e28-a8eeaec3257c%2Fdrxh2up_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Human Anatomy & Physiology (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134580999/9780134580999_smallCoverImage.gif)
![Biology 2e](https://www.bartleby.com/isbn_cover_images/9781947172517/9781947172517_coverImage_Textbooks.gif)
![Anatomy & Physiology](https://www.bartleby.com/isbn_cover_images/9781259398629/9781259398629_smallCoverImage.gif)
![Human Anatomy & Physiology (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134580999/9780134580999_smallCoverImage.gif)
![Biology 2e](https://www.bartleby.com/isbn_cover_images/9781947172517/9781947172517_coverImage_Textbooks.gif)
![Anatomy & Physiology](https://www.bartleby.com/isbn_cover_images/9781259398629/9781259398629_smallCoverImage.gif)
![Molecular Biology of the Cell (Sixth Edition)](https://www.bartleby.com/isbn_cover_images/9780815344322/9780815344322_smallCoverImage.gif)
![Laboratory Manual For Human Anatomy & Physiology](https://www.bartleby.com/isbn_cover_images/9781260159363/9781260159363_smallCoverImage.gif)
![Inquiry Into Life (16th Edition)](https://www.bartleby.com/isbn_cover_images/9781260231700/9781260231700_smallCoverImage.gif)