(a)
Interpretation:
Given chemical equation has to be balanced and also the oxidizing agent and reducing agent has to be identified.
Concept Introduction:
In
In redox reactions, reducing agent is the one that gets oxidized by causing reduction. These agents can be ions, elements, or even compounds. In reduction, the oxidation number decreases due to gain of electrons.
(a)
Answer to Problem K.17E
Balanced chemical equation is
Explanation of Solution
The given reaction is written as follows;
The above chemical equation has the same number of atoms of elements equal on both sides. Hence, this itself is a balanced equation.
Oxidation number of the atoms present in the above equation is indicated as follows;
From the above equation, it is found that the oxidation state of chlorine is increased from
The oxidation state of chlorine decreases from
(b)
Interpretation:
Given chemical equation has to be balanced and also the oxidizing agent and reducing agent has to be identified.
Concept Introduction:
Refer part (a).
(b)
Answer to Problem K.17E
Balanced chemical equation is;
Oxidizing agent is
Explanation of Solution
The given reaction is written as follows;
Balancing Hydrogen atoms: In the left side of the equation there are two hydrogen atoms while on the product side only one hydrogen atom is present. Adding coefficient
Balancing Sodium atoms: In the left side of the equation there is one sodium atom while on the product side there are two sodium atoms. Adding coefficient
Balancing Chlorine atoms: In the left side of the equation there are two chlorine atoms while on the product side there is one chlorine atom. Adding coefficient
Oxidation number of the atoms present in the above equation is indicated as follows;
From the above equation, it is found that the oxidation state of sulfur is increased from
The oxidation state of chlorine decreases from
(c)
Interpretation:
Given chemical equation has to be balanced and also the oxidizing agent and reducing agent has to be identified.
Concept Introduction:
Refer part (a).
(c)
Answer to Problem K.17E
Balanced chemical equation is
Explanation of Solution
The given reaction is written as follows;
Balancing iodine atom: In the reactant side, there is one iodine atom while on the product side, there are two iodine atoms. Adding coefficient
Balancing copper atom: In the reactant side, there are two copper atoms while on the product side, there is one copper atom. Adding coefficient
Oxidation number of the atoms present in the above equation is indicated as follows;
From the above equation, it is found that the oxidation state of iodine is increased from
The oxidation state of copper decreases from
Want to see more full solutions like this?
Chapter F Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- Rel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forwardDraw the following molecule: (Z)-1-chloro-1-butenearrow_forward
- Identify the molecule as having a(n) E, Z, cis, or trans configuration. CH3 H₁₂C ○ E ○ z ○ cis transarrow_forwardIdentify the molecule as having a(n) E, Z, cis, or trans configuration. H₂C- CH3 О Е ○ cis ○ transarrow_forwardThe decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forward
- Don't used hand raitingarrow_forwardCS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forwardCS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forward
- The following is a first order reaction where the rate constant, k, is 6.29 x 10-3 min-*** What is the half-life? C2H4 C2H2 + H2arrow_forwardControl Chart Drawing Assignment The table below provides the number of alignment errors observed during the final inspection of a certain model of airplane. Calculate the central, upper, and lower control limits for the c-chart and draw the chart precisely on the graph sheet provided (based on 3-sigma limits). Your chart should include a line for each of the control limits (UCL, CL, and LCL) and the points for each observation. Number the x-axis 1 through 25 and evenly space the numbering for the y-axis. Connect the points by drawing a line as well. Label each line drawn. Airplane Number Number of alignment errors 201 7 202 6 203 6 204 7 205 4 206 7 207 8 208 12 209 9 210 9 211 8 212 5 213 5 214 9 215 8 216 15 217 6 218 4 219 13 220 7 221 8 222 15 223 6 224 6 225 10arrow_forwardCollagen is used to date artifacts. It has a rate constant = 1.20 x 10-4 /years. What is the half life of collagen?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning