Concept explainers
(a)
Interpretation:
Empirical formula for the paclitaxel has to be given.
Concept Introduction:
Empirical formula is the one that can be determined from the molar mass of the elements that is present in the compound and the mass percentage of the elements. The mass percentage of the elements present in the compound is converted into the moles of each element considering the molar mass of each element. The relative number of moles for each type of atoms is found out finally.
(a)
Answer to Problem F.18E
Empirical formula of paclitaxel is
Explanation of Solution
The mass percentage composition of paclitaxel is given as
The mass percentage of oxygen is calculated as shown below;
Considering
Number of moles of each element present in the compound can be calculated using the molar mass and mass of the element as follows;
Dividing the moles of element obtained using the smallest amount, the ratio can be obtained as shown below;
The ratio of the atoms in the compound is given as follows;
Thus in compound the atoms are present in the ratio of
Therefore, the empirical formula for the compound can be given as
(b)
Interpretation:
Molecular formula of paclitaxel has to be found out.
Concept Introduction:
Empirical formula is the one that can be determined from the molar mass of the elements that is present in the compound and the mass percentage of the elements. The mass percentage of the elements present in the compound is converted into the moles of each element considering the molar mass of each element. The relative number of moles for each type of atoms is found out finally.
Molecular formula of a compound can be found if the empirical formula and molar mass of the compound is known. The molar mass of compound is divided by the molar mass of the empirical formula in order to obtain the factor which is multiplied with the coefficients of empirical formula in order to obtain the molecular formula.
(b)
Answer to Problem F.18E
Molecular formula of paclitaxel is
Explanation of Solution
Empirical formula of the compound is
Molar mass of the empirical formula is calculated as follows;
Molar mass of the paclitaxel is divided by the molar mass of empirical formula in order to obtain the factor as shown below;
The coefficient of empirical formula is multiplied by the factor
Therefore, the molecular formula of paclitaxel is
Want to see more full solutions like this?
Chapter F Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- Give the name of this compound, including stereochemistry if relevant: CICH2 CH3 Br CH₂CH=CH2 Write in the product, including stereochemistry where relevant, for these reactions. See end of ch. 8, p. 301-303. 1. 03 a) 2-methyl-2-pentene -> 2. Zn, H* Br2 b) 1-ethylcyclopentene -->arrow_forwardNonearrow_forward3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forward
- However, why are intermolecular forces in metallic and ionic compounds not discussed as extensively? Additionally, what specific types of intermolecular attractions exist in metals and ionic compoundsarrow_forwardWhat is the preparation of 1 Liter of 0.1M NH4Cl buffer at pH 9.0 with solid NH4Cl and 0.1M NaOH. How would I calculate the math to describe this preparation? How would I use Henderson-Hasselbach equation?arrow_forwardC Predict the major products of this organic reaction. Be sure you use wedge and dash bonds when necessary, for example to distinguish between major products with different stereochemistry. : ☐ + x G C RCO₂H Click and drag to start drawing a structure.arrow_forward
- Fill in the blanks by selecting the appropriate term from below: For a process that is non-spontaneous and that favors products at equilibrium, we know that a) ΔrG∘ΔrG∘ _________, b) ΔunivSΔunivS _________, c) ΔsysSΔsysS _________, and d) ΔrH∘ΔrH∘ _________.arrow_forwardHighest occupied molecular orbital Lowest unoccupied molecular orbital Label all nodes and regions of highest and lowest electron density for both orbitals.arrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 20 NaоH 0103 Br (B) H2504 → (c) (A) 100- MS-NU-0547 80 40 20 31 10 20 100- MS2016-05353CM 80 60 100 MS-NJ-09-3 80 60 40 20 45 J.L 80 S1 84 M+ absent राग 135 137 S2 62 164 166 11 S3 25 50 75 100 125 150 175 m/zarrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning