Concept explainers
(a)
Interpretation:
Overall equation, complete ionic equation, and the net ionic equation for the given reaction has to be written.
Concept Introduction:
Reaction between the acid and base is known as a neutralization reaction. The product formed in neutralization reaction is salt and water. The net reaction that takes place between the acid and base solutions is that the formation of water from hydrogen ions and hydroxide ions. Neutralization reaction is the one that takes place between a strong acid and a metal hydroxide.
Complete ionic equation is the one that shows all the species that is present in the
Net ionic equation is the one that is obtained from the complete ionic equation by cancelling out the spectator ions.
(a)
Explanation of Solution
Overall equation:
The given incomplete equation is written as follows;
Hydrofluoric acid is a weak acid. Hence, it is kept in the molecular form itself. The product formed in the reaction is water and sodium fluoride. The overall equation can be given as shown below;
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
(b)
Interpretation:
Overall equation, complete ionic equation, and the net ionic equation for the given reaction has to be written.
Concept Introduction:
Refer part (a).
(b)
Explanation of Solution
Overall equation:
The given incomplete equation is written as follows;
Trimethyl
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
(c)
Interpretation:
Overall equation, complete ionic equation, and the net ionic equation for the given reaction has to be written.
Concept Introduction:
Refer part (a).
(c)
Explanation of Solution
Overall equation:
The given incomplete equation is written as follows;
Lithium hydroxide is a strong base and hydroiodic acid is a strong acid. The product formed in the reaction is
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
Want to see more full solutions like this?
Chapter F Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- Experiments show that propionic acid (CH3CH2COOH) is a weak acid. Write the chemical equation.arrow_forwardConsider the following generic equation OH(aq)+HB(aq) B(aq)+H2OFor which of the following pairs would this be the correct prototype equation for the acid-base reaction in solution? If it is not correct, write the proper equation for the acid-base reaction between the pair. (a) hydrochloric acid and pyridine, C5H5N (b) sulfuric acid and rubidium hydroxide (c) potassium hydroxide and hydrofluoric acid (d) ammonia and hydriodic acid (e) strontium hydroxide and hydrocyanic acidarrow_forwardssume a highly magnified view of a solution of HCI that allows you to “see” the HCl. Draw this magnified view. If you dropped in a piece of magnesium, the magnesium would disappear, and hydrogen gas would he released. Represent this change using symbols for the elements, and write the balanced equation.arrow_forward
- Write the net ionic equation for the reaction, if any, that occurs on mixing (a) solutions of sodium hydroxide and magnesium chloride. (b) solutions of sodium nitrate and magnesium bromide. (c) magnesium metal and a solution of hydrochloric acid to produce magnesium chloride and hydrogen. Magnesium metal reacting with HCl.arrow_forwardConsider the following generic equation: H+(aq)+ B(aq)HB(aq)For which of the following pairs would this be the correct prototype equation for the acid-base reaction in solution? If it is not correct, write the proper equation for the acid-base reaction between the pair. (a) nitric acid and calcium hydroxide (b) hydrochloric acid and CH3NH2 (c) hydrobromic acid and aqueous ammonia (d) perchloric acid and barium hydroxide (e) sodium hydroxide and nitrous acidarrow_forwardArsenic acid, H3AsO4, is a poisonous acid that has been used in the treatment of wood to prevent insect damage. Arsenic acid has three acidic protons. Say you take a 25.00-mL sample of arsenic acid and prepare it for titration with NaOH by adding 25.00 mL of water. The complete neutralization of this solution requires the addition of 53.07 mL of 0.6441 M NaOH solution. Write the balanced chemical reaction for the titration, and calculate the molarity of the arsenic acid sample.arrow_forward
- 2. Equal amounts (moles) of acetic acid(aq) and sodium sulfite, Na2SO3(aq), are mixed. The resulting solution is acidic basic neutralarrow_forwardA soluble iodide was dissolved in water. Then an excess of silver nitrate, AgNO3, was added to precipitate all of the iodide ion as silver iodide, AgI. If 1.545 g of the soluble iodide gave 2.185 g of silver iodide, how many grams of iodine are in the sample of soluble iodide? What is the mass percentage of iodine, I, in the compound?arrow_forwardOranges and grapefruits are known as citrus fruits because their acidity comes mainly from citric acid, H3C6H5O7. Calculate the concentration of citric acid in a solution if a 30.00-mL sample is neutralized by 15.10 mL of 0.0100 M KOH. Assume that three acidic hydrogens of each citric acid molecule are neutralized in the reaction.arrow_forward
- Chlorisondamine chloride (C14H20Cl6N2) is a drug used in the treatment of hypertension. A 1.28-g sample of a medication containing the drug was treated to destroy the organic material and to release all the chlorine as chloride ion. When the filtered solution containing chloride ion was treated with an excess of silver nitrate, 0.104 g silver chloride was recovered. Calculate the mass percent of chlorisondamine chloride in the medication, assuming the drug is the only source of chloride.arrow_forwardWhen 10. L of water is added to 3.0 L of 6.0 M H2SO4, what is the molarity of the resulting solution? Assume the volumes are additive.arrow_forwardThe active ingredients of an antacid tablet contained only magnesium hydroxide and aluminum hydroxide. Complete neutralization of a sample of the active ingredients required 48.5 mL of 0.187 M hydrochloric acid. The chloride salts from this neutralization were obtained by evaporation of the filtrate from the titration; they weighed 0. 4200 g. What was the percentage by mass of magnesium hydroxide in the active ingredients of the antacid tablet?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning