(a)
Interpretation:
The boiling point of solution containing
Concept Introduction:
Boiling point is the temperature at which liquid turns into a gas. Example: boiling point of water is
Where,
Boiling point elevation
Where,
M is the molality of the solution
i is van’t Hoff factor
Note:
The boiling point of one kilogram of water will be increase by
(a)
Explanation of Solution
Given that
The addition of one mole of solute particles dissolved in one-kilogram of water will raise the boiling point of solution by
Therefore, the number of moles per kilogram in the solution has to be calculated and have to multiply by
One mole of dissolved sucrose will forms one mole of dissolved particles.
Boiling point increase can be calculated as follows:
Boiling point calculation:
(b)
Interpretation:
The boiling point of solution containing
Concept Introduction:
Boiling point is the temperature at which liquid turns into a gas. Example: boiling point of water is
Where,
Boiling point elevation
Where,
M is the molality of the solution
i is van’t Hoff factor
Note:
The boiling point of one kilogram of water will be increase by
(b)
Explanation of Solution
Given that
The addition of one mole of solute particles dissolved in one-kilogram of water will raise the boiling point of solution by
Therefore, the number of moles per kilogram in the solution has to be calculated and have to multiply by
One mole of dissolved sucrose will forms one mole of dissolved particles.
Boiling point increase can be calculated as follows:
Boiling point calculation:
(c)
Interpretation:
The boiling point of solution containing
Concept Introduction:
Boiling point is the temperature at which liquid turns into a gas. Example: boiling point of water is
Where,
Boiling point elevation
Where,
M is the molality of the solution
i is van’t Hoff factor
Note:
The boiling point of one kilogram of water will be increase by
(c)
Explanation of Solution
Given that
The addition of one mole of solute particles dissolved in one-kilogram of water will raise the boiling point of solution by
Therefore, the number of moles per kilogram in the solution has to be calculated and have to multiply by
One mole of dissolved sucrose will forms one mole of dissolved particles.
Boiling point increase can be calculated as follows:
Boiling point calculation:
(d)
Interpretation:
The boiling point of solution containing
Concept Introduction:
Boiling point is the temperature at which liquid turns into a gas. Example: boiling point of water is
Where,
Boiling point elevation
Where,
M is the molality of the solution
i is van’t Hoff factor
Note:
The boiling point of one kilogram of water will be increase by
(d)
Explanation of Solution
Given that
The addition of one mole of solute particles dissolved in one-kilogram of water will raise the boiling point of solution by
Therefore, the number of moles per kilogram in the solution has to be calculated and have to multiply by
One mole of dissolved sucrose will forms one mole of dissolved particles.
Boiling point increase can be calculated as follows:
Boiling point calculation:
Want to see more full solutions like this?
Chapter 8 Solutions
General, Organic, and Biological Chemistry
- In your own words, explain why (a) seawater has a lower freezing point than fresh water. (b) salt is added to the ice in an ice cream maker to freeze the ice cream faster.arrow_forwardEqual numbers of moles of two soluble, substances, substance A and substance B, are placed into separate 1.0-L samples of water. a The water samples are cooled. Sample A freezes at 0.50C, and Sample B freezes at l.00C. Explain how the solutions can have different freezing points. b You pour 500 mL of the solution containing substance B into a different beaker. How would the freezing point of this 500-mL portion of solution B compare to the freezing point of the 1.0-L sample of solution A? c Calculate the molality of the solutions of A and B. Assume that i = 1 for substance A. d If you were to add an additional 1.0 kg of water to solution B, what would be the new freezing point of the solution? Try to write an answer to this question without using a mathematical formula. e What concentration (molality) of substances A and B would result in both solutions having a freezing point of 0.25C? f Compare the boiling points, vapor pressure, and osmotic pressure of the original solutions of A and B. Dont perform the calculations; just state which is the greater in each ease.arrow_forwardIn your own words, explain (a) why seawater has a lower freezing point than fresh water. (b) why one often obtains a grainy product when making fudge (a supersaturated sugar solution). (c) why the concentrations of solutions used for intravenous feeding must be controlled carefully. (d) why fish in a lake (and fishermen) seek deep, shaded places during summer afternoons. (e) why champagne fizzes in a glass.arrow_forward
- Cooking A cook prepares a solution for boiling by adding12.5 g of NaCl to a pot holding 0.750 L of water. Atwhat temperature should the solution in the pot boil?Use Table 14.5 for needed data.arrow_forwardHow many grams of lactose must be added to 655 g of water in order to prepare each of the following percent-by-mass concentrations of aqueous lactose solution? a. 0.50% b. 2.00% c. 10.0% d. 25.0%arrow_forwardConsider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these substances are placed in separate 500-mL samples of water, they undergo the following reactions: AB(s)A+(aq)+B(aq)XY(s)XY(aq) a Which solution would you expect to have the lower boiling point? Why? b Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure? c Describe a procedure that would make the two solutions have the same boiling point. d If you took 250 mL of the AB(aq) solution prepared above, would it have the same boiling point as the original solution? Be sure to explain your answer. e The container of XY(aq) is left out on the bench top for several days, which allows some of the water to evaporate from the solution. How would the melting point of this solution compare to the melting point of the original solution?arrow_forward
- Calculate the boiling and freezing points of water solutions that are 1.50M in the following solutes: a. KCl, a strong electrolyte b. glycerol, a nonelectrolyte c. (NH4)2SO4, strong electrolyte d. Al(NO3)3, a strong electrolytearrow_forwardYou have read that adding a solute to a solvent can both increase the boiling point and decrease the freezing point. A friend of yours explains it to you like this: The solute and solvent can be like salt in water. The salt gets in the way of freezing in that it blocks the water molecules from joining together. The salt acts like a strong bond holding the water molecules together so that it is harder to boil. What do you say to your friend?arrow_forwardCalculate the boiling and freezing points of water solutions that are 1.15M in the following solutes: a. KBr, a strong electrolyte b. ethylene glycol, a nonelectrolyte c. (NH4)2CO3, strong electrolyte d. Al2(SO4)3, a strong electrolytearrow_forward
- Calculate the enthalpies of solution for Li2SO4 and K2SO4. Are the solution processes exothermic or endothermic? Compare them with LiCl and KCl. What similarities or differences do you find?arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning