(a)
Interpretation:
Concentration of diluted Hydrogen peroxide solution has to be calculated.
Concept Introduction:
Mass–volume percent is given by,
(b)
Interpretation:
Concentration of diluted Hydrogen peroxide solution has to be calculated.
Concept Introduction:
Volume–volume percent is given by,
(c)
Interpretation:
Concentration of diluted Hydrogen peroxide solution has to be calculated.
Concept Introduction:
Mass-percent is given by,
(d)
Interpretation:
Concentration of diluted Hydrogen peroxide solution has to be calculated.
Concept Introduction:
Molarity:
Concentration of solution is given in the term of molarity it is given by,
Trending nowThis is a popular solution!
Chapter 8 Solutions
General, Organic, and Biological Chemistry
- Calcium carbonate, CaCO3, can be obtained in a very pure state. Standard solutions of calcium ion are usually prepared by dissolving calcium carbonate in acid. What mass of CaCO3 should be taken to prepare 500. mL of 0.0200 M calcium ion solution?arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Oxygen gas in water with P = 1 atm and T = 10C Oxygen gas in water with P = 1 atm and T = 20C b. Nitrogen gas in water with P = 2 atm and T = 50C Nitrogen gas in water with P = 1 atm and T = 70C c. Table salt in water with P = 1 atm and T = 40C Table salt in water with P = 1 atm and T = 70C d. Table sugar in water with P = 3 atm and T = 30C Table sugar in water with P = 1 atm and T = 80Carrow_forwardAddition of water to concentrated sulfuric acid is dangerous because it generates enough heat to boil the water, causing it to spatter out of the container. For this reason, chemists remember to add acid to water. In a dilution experiment, we calculate the amount of the more concentrated solution that must be measured out. If we place this concentrated solution (Figure 4.7) in the volumetric flask first, then dilute with water, we violate the caution Add acid to water. Describe a safer variation on the method shown in Figure 4.7 that allows the quantitative dilution of concentrated sulfuric acid. Figure 4.7 Preparing a dilute solution from a concentrated solution. (a) Draw the concentrated solution into a pipet to a level just above the calibration mark. (b) Allow the liquid to settle down to the calibration line. Touch the tip of the pipet to the side of the container to remove any extra liquid. (c) Transfer this solution to a volumetric flask. Again touch the pipet to the wall of the flask to ensure complete transfer, but do not blow out the pipet because it is calibrated for a small amount of liquid to remain in the tip. (d) Dilute to the mark with solvent. Frequently, especially with concentrated acids, it is best to have some solvent present in the volumetric flask before you add the concentrated sample.arrow_forward
- For each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forwardWhat happens if you add a very small amount of solid salt (NaCl) to each beaker described below? Include a statement comparing the amount of solid eventually found in the beaker with the amount you added: a a beaker containing saturated NaCl solution, b a beaker with unsaturated NaCl solution, c a beaker containing supersaturated NaCl solution. A saturated sodium chloride solution.arrow_forwardFluoridation of city water supplies has been practiced in the United States for several decades. It is done by continuously adding sodium fluoride to water as it comes from a reservoir. Assume you live in a medium-sized city of 150,000 people and that 660 L (170 gal) of water is used per person per day. What mass of sodium fluoride (in kilograms) must be added to the water supply each year (365 days) to have the required fluoride concentration of 1 ppm (part per million)that is, 1 kilogram of fluoride per 1 million kilograms of water? (Sodium fluoride is 45.0% fluoride, and water has a density of 1.00 g/cm3.)arrow_forward
- Refer to Figure 13.10 ( Sec. 13-4b) to answer these questions. (a) Does a saturated solution occur when 65.0 g LiCl is present in 100 g H2O at 40 C? Explain your answer. (b) Consider a solution that contains 95.0 g LiCl in 100 g H2O at 40 C. Is the solution unsaturated, saturated, or supersaturated? Explain your answer. (c) Consider a solution that contains 50. g Li2SO4 in 200. g H2O at 50 C. Is this solution unsaturated, saturated, or supersaturated? Explain your answer. Figure 13.10 Solubility of ionic compounds versus temperature.arrow_forward95. Many metal ions form insoluble sulfide compounds when a solution of the metal ion is treated with hydrogen sulfide gas. For example, nickel(II) precipitates nearly quantitatively as NiS when H2S gas is bubbled through a nickel ion solution. How many milliliters of gaseous H2S at STP are needed to precipitate all (he nickel ion present in 10. mL of 0.050 M NiCl2 solution?arrow_forwardYou make a saturated solution of NaCl at 25 C. No solid is present in the beaker holding the solution. What can be done to increase the amount of dissolved NaCl in this solution? (See Figure 13.11.) (a) Add more solid NaCl. (b) Raise the temperature of the solution. (c) Raise the temperature of the solution, and add some NaCl. (d) Lower the temperature of the solution, and add some NaCl. Figure 13.11 The temperature dependence of the solubility of some ionic compounds in wafer. The solubility of most ionic compounds increases with increasing temperature This is illustrated using NH4CI (ports b and c).arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning