
(a)
Interpretation:
The given characterization applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
True solution:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.
(b)
Interpretation:
The given characterization applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
True solution:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.
(c)
Interpretation:
The given characterization applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.
(d)
Interpretation:
The given characterization applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.

Trending nowThis is a popular solution!

Chapter 8 Solutions
General, Organic, and Biological Chemistry
- Using wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forward
- Given a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forwardTRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




