![General, Organic, and Biological Chemistry](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_largeCoverImage.gif)
(a)
Interpretation:
The osmolarity of
Concept Introduction:
Osmosis is the process by which net movement of solvent into a expanse of higher solute concentration via semi permeable membrane.
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution. We can calculate osmotic pressure by using this formula is given by,
Osmotic pressure
Where,
i- Von’tHoff’s factor
M – Molarity of the solution (mol/L)
R- Ideal gas constant (0.08206
T-Temperature in Kelvin
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given data is as follows:
Osmolarity can be determined by the equation given below:
Therefore, osmolarity of
(b)
Interpretation:
The osmolarity of
Concept Introduction:
Osmosis is the process by which net movement of solvent into a expanse of higher solute concentration via semi permeable membrane.
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution. We can calculate osmotic pressure by using this formula is given by,
Osmotic pressure
Where,
i- Von’tHoff’s factor
M – Molarity of the solution (mol/L)
R- Ideal gas constant (0.08206
T-Temperature in Kelvin
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given data is as follows:
Osmolarity can be determined by the equation given below:
Therefore, osmolarity of
(c)
Interpretation:
The osmolarity of
Concept Introduction:
Osmosis is the process by which net movement of solvent into a expanse of higher solute concentration via semi permeable membrane.
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution. We can calculate osmotic pressure by using this formula is given by,
Osmotic pressure
Where,
i- Von’tHoff’s factor
M – Molarity of the solution (mol/L)
R- Ideal gas constant (0.08206
T-Temperature in Kelvin
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given data is as follows:
Osmolarity can be determined by the equation given below:
Therefore, osmolarity of
Therefore, osmolarity of
Total osmolarity is
(d)
Interpretation:
The osmolarity of
Concept Introduction:
Osmosis is the process by which net movement of solvent into a expanse of higher solute concentration via semi permeable membrane.
Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution. We can calculate osmotic pressure by using this formula is given by,
Osmotic pressure
Where,
i- Von’tHoff’s factor
M – Molarity of the solution (mol/L)
R- Ideal gas constant (0.08206
T-Temperature in Kelvin
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given data is as follows:
Osmolarity can be determined by the equation given below:
Therefore, osmolarity of
Therefore, osmolarity of
Total osmolarity is
Want to see more full solutions like this?
Chapter 8 Solutions
General, Organic, and Biological Chemistry
- Write the calculate the reaction quotient for the following system, if the partial pressure of all reactantsand products is 0.15 atm: NOCl (g) ⇌ NO (g) + Cl2 (g) H = 20.5 kcalarrow_forwardComplete the spectroscopy with structurearrow_forwardcould you answer the questions and draw the complete mechanismarrow_forward
- Complete the spectroscopy with structurearrow_forwardCalculate the reaction quotient for the reaction:NaOH (s) ⇌ Na+ (aq)+ OH- (aq) + 44.4 kJ [Na+] = 4.22 M [OH-] = 6.41 Marrow_forwardGiven the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forward
- Match each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forwardWrite the reaction quotient for: Pb2+(aq) + 2 Cl- (aq) ⇌ PbCl2(s)arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)