Water at 300 K and a flow rate of 5 kg/s enters a black, thin-walled tube, which passes through a large furnace whose walls and air are at a temperature of 700 K. The diameter and length of the tube are 0. 25 m and 8 m, respectively. Convection coefficients associated with water flow through the tube and airflow over the lube are 300 W/m 2 ⋅ K and 500 W/m 2 ⋅ K , respectively. (a) Write an expression for the linearized radiation coefficient corresponding to radiation exchange between the outer surface of the pipe and the furnace walls. Explain how to calculate this coefficient if the surface temperature of the tube is represented by the arithmetic mean of its inlet and outlet values. (b) Determine the outlet temperature of the water, T m . o .
Water at 300 K and a flow rate of 5 kg/s enters a black, thin-walled tube, which passes through a large furnace whose walls and air are at a temperature of 700 K. The diameter and length of the tube are 0. 25 m and 8 m, respectively. Convection coefficients associated with water flow through the tube and airflow over the lube are 300 W/m 2 ⋅ K and 500 W/m 2 ⋅ K , respectively. (a) Write an expression for the linearized radiation coefficient corresponding to radiation exchange between the outer surface of the pipe and the furnace walls. Explain how to calculate this coefficient if the surface temperature of the tube is represented by the arithmetic mean of its inlet and outlet values. (b) Determine the outlet temperature of the water, T m . o .
Water at 300 K and a flow rate of
5 kg/s
enters a black, thin-walled tube, which passes through a large furnace whose walls and air are at a temperature of 700 K. The diameter and length of the tube are
0.
25 m
and 8 m, respectively. Convection coefficients associated with water flow through the tube and airflow over the lube are
300
W/m
2
⋅
K
and
500
W/m
2
⋅
K
, respectively.
(a) Write an expression for the linearized radiation coefficient corresponding to radiation exchange between the outer surface of the pipe and the furnace walls. Explain how to calculate this coefficient if the surface temperature of the tube is represented by the arithmetic mean of its inlet and outlet values. (b) Determine the outlet temperature of the water,
T
m
.
o
.
1. A 40 lb. force is applied at point E. There are pins at
A, B, C, D, and F and a roller at A.
a. Draw a FBD of member EFC showing all the known and
unknown forces acting on it.
b. Draw a FBD of member ABF showing all the known and
unknown forces acting on it.
c. Draw a FBD of member BCD showing all the known and
unknown forces acting on it.
d. Draw a FBD of the entire assembly ADE showing all the
known and unknown forces acting on it.
e. Determine the reactions at A and D.
f. Determine the magnitude of the pin reaction at C.
40 lbs.
B
A
6 in.
4 in.
D
F
-5 in.4 in 4.
A crude oil of specific gravity0.85 flows upward at a volumetric rate of flow of 70litres per
second through
a vertical
venturimeter,with an inlet diameter of 250 mm and a throat
diameter of 150mm. The coefficient
of discharge of venturimeter is 0.96. The vertical
differences betwecen the pressure toppings is
350mm.
i)
Draw a well labeled diagram to represent the above in formation
i)
If the two pressure gauges are connected at the tapings such that they are
positioned at the levels of their corresponding tapping points,
determine the
difference of readings in N/CM² of the two pressure gauges
ii)
If a mercury differential
manometer
is connected in place of pressure gauges,
to the tappings such that the connecting tube up to mercury are filled with oil
determine the difference in the level of mercury column.
Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.