Concept explainers
A double-wall heat exchanger is used to transfer heat between liquids flowing through semicircular copper tubes. Each tube has a wall thickness of
(a) If hot and cold water at mean temperatures of
(b) Using the thermal model developed for part (a), determine the heat transfer rate per unit length when the fluids are ethylene glycol. Also, what effect will fabricating the exchanger from an aluminum alloy have on the heat rate? Will increasing the thickness of the tube walls have a beneficial effect’?
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
DeGarmo's Materials and Processes in Manufacturing
Fundamentals of Aerodynamics
Introduction To Finite Element Analysis And Design
HEAT+MASS TRANSFER:FUND.+APPL.
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Heat and Mass Transfer: Fundamentals and Applications
- Water flowing in a long, aluminum lube is to be heated by air flowing perpendicular to the exterior of the tube. The ID of the tube is 1.85 cm, and its OD is 2.3 cm. The mass flow rate of the water through the tube is 0.65kg/s, and the temperature of the water in the lube averages 30C. The free-stream velocity and ambient temperature of the air are 10m/sand120C, respectively. Estimate the overall heat transfer coefficient for the heat exchanger using appropriate correlations from previous chapters. State all your assumptions.arrow_forwardMot water is used to heat air in a double-pipe heat exchanger as shown in the following sketch. If the heat transfer coefficients on the water side and on the air side are 550W/m2Kand55W/m2K respectively, calculate the overall heat transfer coefficient based on the outer diameter. The heat exchanger pipe is 5-cm, schedule 40 steel (k=54W/mK) with water inside.arrow_forwardHot gas enters a finned-tube, crossflow heat exchanger at 300 °C and exits at 100 °C. Assume that both fluids are unmixed. The gas is used to heat pressurized water flowing at 1 kg/s from 35 °C to 125 °C. Assume constant properties and use 1000 J/kg K and 4197 J/kg K as the specific heat of the gas and the water, respectively. The overall heat transfer coefficient, based on the gas-side surface area is U₁ = 100 W/m² K. Please determine the required gas side surface area (Aʼn), using the NTU method. Repeat the problem using the LMTD method. Compare your results by quantifying the difference between the two methods with a percent difference and write an observation/conclusion for this result.arrow_forward
- 5. Hot exhaust gases, which enter a finned-tube, cross-flow heat exchanger at 300 °C and leave at 100 °C, are used to heat pressurized water at a flow rate of 1 kg/s from 35 °C 125 °C. The specific heat of water at the average water temperature is 4197 J/kg. K. The overall heat transfer coefficient based on the gas-side surface area is Uh = 100 W/m².K. Determine the required gas-side surface area A₁ using the LMTD and & -NTU method.arrow_forward1) For a concentric counter-flow heat exchanger, hot oil is coming in the tube of the shell/tube heat exchanger and it's cooled by water that surrounds it in the shell. Calculate what is the required length of the heat exchanger tube in order to perform the necessary cooling. Assume there is negligible heat loss to the surroundings and negligible conductive heat resistance between the two fluids. Mass flow rate of oil = 0.17 kg/s Oil heat capacity = 2375 J/kg-ºC Oil convective heat transfer coefficient = 39.7 W/m²-°C Oil enters tube at temperature = 130 °C Oil leaves tube at temperature = 83 °C Water convective heat transfer coefficient = 2190 W/m²-°C Water enters shell at temperature 15 °C Water leaves shell at temperature = 74 °C Inner diameter = 4.5 cm Outer diameter = 6.5 cmarrow_forwardDesign a concentric tube heat exchanger for cooling lubricating oil that is comprised of a thin- walled inner tube of 25-mm diameter carrying water and an outer tube of 50-mm diameter carrying the oil. The exchanger operates in Parallel flow. The specific heat for water and oil are 4200 and 1900 J/kg.K and the surface heat coefficient of water and oil are 150 and 200 W/(m?.K) , respectively. Assume conduction heat transfer through the wall is negligible.arrow_forward
- Question B3. A concentric tube heat exchanger is used to cool lubricating oil for a large diesel engine. The inner tube is constructed of 2 mm wall thickness stainless steel, having thermal conductivity 16 W/m K. The flow rate of cooling water through the inner tube (radius = 30 mm) is 0.3 kg/s. The flow rate of oil through the tube (radius = 50 mm) is 0.15 kg/s. Assume fully developed flow, if the oil cooler is to be used to cool oil from 90°C to 50°C using water available at 283K. The overall heat transfer coefficient is 21.9 W/(m2K). Calculate the length of the tube required for parallel (co-current) flow, and the length of the tube required for counter-current flow. The average heat capacity for oil is 2.131 kJ/(kgK) and for the water 4.178 kJ/(kgK).arrow_forwardAn oil cooler is used to cool lubricating oil from 70oC to 40oC. The cooling water enters the heat exchanger at 15oC and leaves at 25oC. The specific heat capacities of the oil and water are 2000 and 4200 J/Kg.K respectively, and the oil flow rate is 4 Kg/s. Calculate the water flow rate required. Calculate the true mean temperature difference for (two-shell-pass / four-tube-pass) and (one-shell-pass / two-tube-pass) heat exchangers respectively. Find the effectiveness of the heat exchangers.arrow_forward1- For the following design conditions:- Condenser heat load (Qc) = 293 MW Condenser Pressure (Pcond) = 0.06 bar Cooling Water inlet temperature (tw,) = 25 C° Cooling Water velocity (Vw) = 2 m/s Number of Passes (N) = Single Tube Diameter (D) Tube Length (L) = 15 m Tubes Cleanliness factor (Fclean) = 0.85 Overall heat transfer coefficient (U,) = 4000 W /m²C°. Calculate the following:- = 25 mm a. Condenser Surface area b. Cooling water mass flow rate c. Condenser effectivenessarrow_forward
- You are then asked by your supervisor to design a concentric tube heat exchanger to operate under the following conditions: Cold Fluid m = 0.125 kg/s Cp 4200 J/kgK T₁ = 40°C To = 95°C Hot Fluid: m = 0.125 kg/s Cp = 2100 J/kgK T₁ = 210°C If the heat exchanger is characterised by uniform overall heat transfer coefficient, using the LMTD method, determine: e) The maximum possible heat transfer rate. f) The heat exchanger effectiveness. g) The ratio of the heat transfer area under parallel flow to the heat transfer area under counter flow. Comment on the answer.arrow_forward(1)aA double pipe heat exchanger is constructed of a copper (k=380Wm.K) inner tube of internal diameter D1=1.2cm and external diameter D0=1.6cm and an outer tube diameter 3.0cm.The convection heat transfer coefficient is reported to be hi=700W/m2.K on the inner surface of the tube and h0 =1400W/m2.K on its outer surface.For a fouling factor Rf,I=0.0005m2.K/W on the tube side and Rf,o=0.0002m2.K/W on the shell side, determine (I) the thermal resistance of the heat exchanger per unit length.(ii) the overall heat transfer coefficients Ui and U0 base on the inner and outer surface area of the tube, respectively. (b)Classify heat exchangers according to the flow type and explain the characteristics of each type. (c)How does the presence of baffles affect the heat transfer and the pumping power requirements? Explain (d) Consider a hot baked potato.Will the potato cool faster or slower when we blow the warm air coming from our lungs on it instead of letting it cool naturally in the cooler…arrow_forwardConsider the shell and tube heat exchanger where liquid A of density pa is flowing through the inner tube and is being heated from temperature Tat to Taz by liquid B of density pe flowing counter-currently around the tube The temperature of liquid B decreases from Ten to Tea. In many practical situations the tubular heat exchanger is modelled using simple ordinary differential equations. This is possible if we think about the heat exchanger within the unit as being an exchanger between two perfect mixed tanks. Each one of them contains a liquid. i Investigate the nature of a system a heat exchanger under ideal conditions ii. Develop appropriate equations to model the heat exchange i State the assumption and their implications iv. Perform a degree of freedom analysis.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning