Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.108P
To determine
The transition density for hydrogen
The transition density for air.
The transition density carbon dioxide.
The comparison of calculated transition density to the gas density at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a thin-walled, fi xed-volume container of volume V that holds an ideal gas at constant temperature T. It can be shown by dimensional analysis that the number of particles striking the walls of the container per unit area per unit time is given by nv-/4, where as usual n is the particle number density. The container has a small hole of area A in its surface through which the gas can leak slowly. Assume that A is much less than the surface area of the container. (a) Assuming that the pressure inside the container is much greater than the outside pressure (so that no gas will leak from the outside back in), estimate the time it will take for the pressure inside to drop to half the initial value. Your answer should contain A, V, and the mean molecular speed v-. (b) Obtain a numerical result for a spherical container with a diameter of 40 cm containing air at 293 K, if there is a circular hole of diameter 1.0 mm in the surface.
Calculate the capillary effect in mm in a glass tube of 4mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25ᵒC and the values of surface tensions of water and mercury at 25⁰C in contact with air is 0.0735 and 0.59N/m respectively. The angle of contact for water is 0ᵒ and 130ᵒ for mercury . Take the density of water 1000 kg/m3 , specific gravity of mercury is 13.6.
The capillary effect of water in mm is equal to=
The capillary effect of mercury in mm is equal to=
Calculate the capillary effect in mm in a glass tube of 2mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and
mercury at 25°C in contact with air is 0.0755 and 0.52N/m respectively. The angle of contact for water is 0° and 130° for mercury. Take the density of water 1000 kg/m³, specific gravity of mercury
is 13.6.
(ENTER ONLY THE VALUES BY REFERRING THE UNITS GIVEN)
The capillary effect of water in mm is equal to=
The capillary effect of mercury in mm is equal to=
Chapter 8 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 8 - Fully developed conditions are known to exist for...Ch. 8 - What is the pressure drop associated with water at...Ch. 8 - Water at 27C flows with a mean velocity of 1 m/s...Ch. 8 - An engine oil cooler consists of a bundle of 25...Ch. 8 - For fully developed laminar flow through a...Ch. 8 - Consider pressurized water, engine oil (unused),...Ch. 8 - Velocity and temperature profiles for laminar flow...Ch. 8 - At a particular axial station, velocity and...Ch. 8 - In Chapter 1, it was stated that for...Ch. 8 - When viscous dissipation is included. Equation...
Ch. 8 - Consider a circular tube of diameter D and length...Ch. 8 - Consider flow in a circular tube. Within the test...Ch. 8 - Consider a cylindrical nuclear fuel rod of length...Ch. 8 - Consider the laminar thermal boundary layer...Ch. 8 - In a particular application involving fluid flow...Ch. 8 - A flat-plate solar collector is used w heat...Ch. 8 - Atmospheric air enters the heated section of a...Ch. 8 - Fluid enters a tube with a flow rate of 0.015kg/s...Ch. 8 - Water at 300 K and a flow rate of 5kg/s enters a...Ch. 8 - Slug flow is an idealized tube flow condition for...Ch. 8 - Superimposing a control volume that is...Ch. 8 - An experimental nuclear core simulation apparatus...Ch. 8 - Water at 20°C and a flow rate of 0.1kg/s enters a...Ch. 8 - Engine oil is heated by flowing through a circular...Ch. 8 - Engine oil flows through a 25mm -diameter tube at...Ch. 8 - In the final stages of production, a...Ch. 8 - An oil preheater consists of a single tube of 10mm...Ch. 8 - Engine oil flows at a rate of 1kg/s through a 5mm...Ch. 8 - Air at p=1atm enters a thin-walled ( D=5-mm...Ch. 8 - To cool a summer home without using a vapor...Ch. 8 - Batch processes are often used in chemical and...Ch. 8 - The evaporator section of a heat pump is installed...Ch. 8 - Water flowing at 2kg/s through a 40mm diameter...Ch. 8 - Consider the conditions associated with the hot...Ch. 8 - A thick-walled, stainless steel (AISI 316) pipe of...Ch. 8 - An air heater for an industrial application...Ch. 8 - Consider fully developed conditions in a circular...Ch. 8 - Consider the encased pipe of Problem 4.29, but now...Ch. 8 - Water flows through a thick-wailed tube with an...Ch. 8 - Atmospheric air enters a 10m -long. 150mm...Ch. 8 - NaK (45%/55). which is an alloy of sodium and...Ch. 8 - The products of combustion from a burner are...Ch. 8 - Liquid mercury at 0.5kg/s is lo be heated from 300...Ch. 8 - The surface of a 50-mm-diameter. thin-walled tube...Ch. 8 - Consider a horizontal, thin-walled circular tube...Ch. 8 - Consider pressurized liquid water flowing at...Ch. 8 - Cooling water flows through the 25.4-mm -diameter...Ch. 8 - The air passage for cooling a gas turbine vane can...Ch. 8 - The core of a high-temperature, gas-cooled nuclear...Ch. 8 - Air at 200kPa enters a 2-m -long, thin-walled tube...Ch. 8 - Heated air required for a food-drying process is...Ch. 8 - Consider laminar flow of a fluid with Pr=4 that...Ch. 8 - A common procedure for cooling a high-performance...Ch. 8 - One way to cool chips mounted on the circuit...Ch. 8 - Refrigerant- 134a is being transported a 0.1 kg/s...Ch. 8 - Oil at 150°C flows slowly through a long,...Ch. 8 - Exhaust gases from a wire processing oven are...Ch. 8 - A hot fluid passes through a thin-walled tube of...Ch. 8 - Consider a thin-walled tube of 10mm diameter and...Ch. 8 - Water at a flow rate of m =0.215kg/s is cooled...Ch. 8 - To maintain pump power requirements per unit flow...Ch. 8 - Consider a thin-walled, metallic tube of length...Ch. 8 - A circular tube of diameter D=0.2mm and length...Ch. 8 - Repeat Problem 8.66 for a circular tube of...Ch. 8 - Heat is to be removed from a reaction vessel...Ch. 8 - A healing contractor must heat 0.2kg/s of water...Ch. 8 - A thin-walled tube with a diameter of 6 mm and...Ch. 8 - A 50mm -diameter, thin—walled metal pipe covered...Ch. 8 - A thin-walled, uninsulated 0.3m -diameter duct is...Ch. 8 - Pressurized water at Tm,i=200C is pumped at...Ch. 8 - Water at 290K and 0.2kg/s flows through a Teflon...Ch. 8 - The temperature of flue gases flowing through the...Ch. 8 - In a biomedical supplies manufacturing process, a...Ch. 8 - Consider the ground source heat pump of Problem...Ch. 8 - For a sharp-edged inlet and a combined entry...Ch. 8 - Fluid enters a thin-walled rube of 5-mni diameter...Ch. 8 - Air at 3104kg/s and 27C enters a rectangular duct...Ch. 8 - Air at 25C flows at 30106kg/s within 100mm -long...Ch. 8 - A cold plate is an active cooling device that is...Ch. 8 - The cold plate design of Problem 8.82 has not been...Ch. 8 - A device that recovers heat from high-temperature...Ch. 8 - Air at 1 atm and 285K enters a 2-m -long...Ch. 8 - A double-wall heat exchanger is used to transfer...Ch. 8 - Consider laminar, fully developed flow in a...Ch. 8 - You have been asked to perform a feasibility study...Ch. 8 - A coolant flows through a rectangular channel...Ch. 8 - An electronic circuit board dissipating 50W is...Ch. 8 - To slow down large prime movers like locomotives,...Ch. 8 - A printed circuit board (PCB) is cooled by...Ch. 8 - Water at m=0.02kg/s and Tm,i=20C enters an annular...Ch. 8 - tFor the conditions of Problem 8.93, how tong must...Ch. 8 - Referring 10 Figure 8.11, consider conditions in...Ch. 8 - Consider the air healer of Problem 8.38, but now...Ch. 8 - Consider a concentric tube annulus for which the...Ch. 8 - It is common practice (o recover waste heat from...Ch. 8 - A concentric lube arrangement, for which the inner...Ch. 8 - Consider sterilization of the pharmaceutical...Ch. 8 - An engineer proposes to insert a solid rod of...Ch. 8 - An electrical power transformer of diameter 230mm...Ch. 8 - A bayonet cooler is used to reduce the temperature...Ch. 8 - The mold used in an injection molding process...Ch. 8 - Prob. 8.107PCh. 8 - Prob. 8.108PCh. 8 - Consider the microchannel cooling arrangement...Ch. 8 - The onset of turbulence in a gas flowing within a...Ch. 8 - Due to its comparatively large thermal...Ch. 8 - A novel scheme for dissipating heat from the chips...Ch. 8 - An experiment is designed to study microscale...Ch. 8 - Determine the tube diameter that corresponds to a...Ch. 8 - An experiment is devised to measure liquid flow...Ch. 8 - In the processing of very long plastic tubes of...Ch. 8 - Air at 300K and a flow rate of 3kg/h passes upward...Ch. 8 - What is the convection mass transfer coefficient...Ch. 8 - Air flowing through a tube of 75mm diameter passes...Ch. 8 - Consider gas flow of mass density and rate m...Ch. 8 - Atmospheric air at 25C and 3104kg/s flows through...Ch. 8 - Air at 25C and 1atm is in fully developed flow at...Ch. 8 - A humidifier consists of a bundle of vertical...Ch. 8 - The final step of a manufacturing process in which...Ch. 8 - Dry air is inhaled at a rate of lo liter/win...Ch. 8 - A mass transfer Operation is preceded by laminar...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The clear plastic bottles used for carbonated beverages (sometimes also called “soda,” “pop,” or “soda pop”) are made from poly(ethylene terephthalate) (PET). The “fizz” in pop results from dissolved carbon dioxide (CO2); because PET is permeable to CO2, pop stored in PET bottles will eventually go “flat” (i.e., lose its fizz). A 20-oz. bottle of pop has a CO2 pressure of about 570 kPa inside the bottle, and the CO2 pressure outside the bottle is 7 kPa. Assuming conditions of steady-state, calculate the diffusion flux in cm3 at STP/cm2.s of CO2 through the wall of the bottle. The Permeability Constant of the PET bottle is 0.23 x 10^-13 cm3@STP.cm/cm2.s.Pa. Note: assume that each bottle has a surface area of 500 cm2 and a wall thickness of 0.07 cm. Answer in Scientific Notation example 1.1e-12. Round your answer to 2 significant figures.arrow_forwardCalculate the capillary effect in mm in a glass tube of 4mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and mercury at 25°C in contact with air is 0.0735 and 0.59N/m respectively. The angle of contact for water is 0° and 130° for mercury . Take the density of water 1000 kg/m³ , specific gravity of mercury is 13.6.arrow_forwardI need help answering these two questions.Thank YOUarrow_forward
- ..P15 A horizontal cylinder 10 cm in diameter contains helium gas at room temperature and atmospheric pressure. A piston keeps the gas inside a region of the cylinder 20 cm long. (a) If you quickly pull the piston outward a distance of 12 cm, what is the approximate temperature of the helium immediately afterward? What approximations did you make? (b) How much work did you do, including sign? (Note that you need to consider the outside air as well as the inside helium in calculating the amount of work you do.) (c) Immediately after the pull, what force must you exert on the piston to hold it in position (with the helium enclosed in a volume that is 20 + 12 = 32 cm long)? (d) You wait while the helium slowly returns to room temperature, maintaining the piston at its current location. After this wait, what force must you exert to hold the piston in position? (e) Next, you very slowly allow the piston to move back into the cylinder, stopping when the region of helium gas is 25 cm long.…arrow_forwardA vessel of capacity 7.5 m3 contains the mass of 8 kg of Oxygen gas at a pressure of 180000 N/m2 and a temperature of 338 K. Find the gas constant of Oxygen gas in J/kgK. Gas constant, (J/kgK) =arrow_forwardShow your complete solution.arrow_forward
- Cooking an egg involves the denaturation of a protein called albumen. The time required to achieve a particular degree of denaturation is inversely proportional to the rate constant for the process. This reaction has a high activation energy, E, = 418 kJ mol. Calculate how long it would take to cook a traditional three-minute egg on top of mountain peak on a day when the atmospheric pressure there is 355 mmHgarrow_forwardThe liquid food is flowed through an uninsulated pipe at 90 ° C. The product flow rate is 0.4 kg / s and has a density of 1000 kg / m³, specific heat 4 kJ / (kg K), a viscosity of 8 x 10-6 Pa s, and a thermal conductivity of 0.55 W / (m) K). Assume that the change in viscosity is negligible. The internal diameter of the pipe is 20 mm with a thickness of 3 mm made of stainless steel (k = 15 W / [m ° C]). The outside temperature is 15 ° C. If the outer convective heat transfer coefficient is 18 W / (m² K), calculate the heat loss at steady state per meter of pipe length. a.Find the convection coefficient in the pipe = AnswerW / m² ° C. b. Calculate heat loss per meter pipe length = Answerwatt.arrow_forwardI need the answer soon 2arrow_forward
- The liquid food is flowed through an uninsulated pipe at 90 ° C. The product flow rate is 0.3 kg / s and has a density of 1000 kg / m³, specific heat 4 kJ / (kg K), a viscosity of 8 x 10-6 Pa s, and a thermal conductivity of 0.55 W / (m) K). Assume that the change in viscosity is negligible. The internal diameter of the pipe is 30 mm with a thickness of 3 mm made of stainless steel (k = 15 W / [m ° C]). The outside temperature is 15 ° C. If the outer convective heat transfer coefficient is 18 W / (m² K), calculate the heat loss at steady state per meter pipe length. a. Find the convection coefficient in pipe = W / m² ° C. b. Calculate heat loss per meter pipe length = wattsarrow_forwardExample(1-14): mixture gas and liquid flow through 0.02 m inside diameter pipe at total flow rate of 0.2 kg/s. if the gas weight fraction is 0.149 what is the pressure drop per unit length of pipe. Where the pipe roughness 0.00015 mm, liquid and gas viscosities are 2x103 pa.s and 1x10-5 pa.s respectively. finaly the liquid and gas densities are 1000 kg/m³ and 60 kg/m³ pa.s respectively.arrow_forward8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license