Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 7.42QP
A normal-weight concrete has an average compressive strength of 20 MPa. What is the estimated flexure strength?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Calculate the collapse load (P) for the two fixed ended beam shown below.
Use virtual work
method
P
2 m
4 m
L= 6 m
Find the collapse load (Wu) for the one-end continuous beam shown below.
Use virtual work method
Wu
6 m
Find the maximum distributed load can be applied to the two fixed ends
beam shown below.
Use Virtual work method
Wu
L=6m
Chapter 7 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 7 - The design engineer specifies a concrete strength...Ch. 7 - A project specifies a concrete strength of 24.1...Ch. 7 - A project specifies a concrete strength of at...Ch. 7 - What is your recommendation for the maximum size...Ch. 7 - A concrete mix with a 3-in. slump, w/c ratio of...Ch. 7 - Prob. 7.6QPCh. 7 - You are working on a concrete mix design that...Ch. 7 - Design the concrete mix according to the following...Ch. 7 - Design the concrete mix according to the following...Ch. 7 - The design of a concrete mix requires 1173 kg/m3...
Ch. 7 - Prob. 7.11QPCh. 7 - Prob. 7.12QPCh. 7 - Students in the materials lab mixed concrete with...Ch. 7 - Students in the materials lab mixed concrete with...Ch. 7 - Why is it necessary to measure the air content of...Ch. 7 - What do we mean by curing concrete? What will...Ch. 7 - Discuss five different methods of concrete curing.Ch. 7 - Draw a graph showing the typical relation between...Ch. 7 - Why is extra water harmful to fresh concrete, but...Ch. 7 - Discuss the change in volume of concrete at early...Ch. 7 - Discuss the creep response of concrete structures....Ch. 7 - Prob. 7.22QPCh. 7 - On one graph, draw a sketch showing the typical...Ch. 7 - Using Figure 7.34, a. Determine the ultimate...Ch. 7 - Three concrete mixes with the same ingredients,...Ch. 7 - Three concrete mixes with the same ingredients,...Ch. 7 - Three 100 mm 200 mm concrete cylinders with water...Ch. 7 - Students in the materials class prepared three 4 ...Ch. 7 - Three 150 mm 300 mm concrete cylinders with water...Ch. 7 - Three 6 in. 12 in. concrete cylinders with water...Ch. 7 - A normal-weight concrete has an average...Ch. 7 - Discuss the significance of the compressive...Ch. 7 - What is the standard size of PCC specimens to be...Ch. 7 - Prob. 7.34QPCh. 7 - What is the purpose of performing the flexure test...Ch. 7 - What are the advantages of using a third-point...Ch. 7 - Consider a standard flexural strength specimen of...Ch. 7 - To evaluate the effect of a certain admixture on...Ch. 7 - To evaluate the effect of a certain admixture on...Ch. 7 - Prob. 7.40QPCh. 7 - Prob. 7.41QPCh. 7 - A normal-weight concrete has an average...Ch. 7 - Three batches of concrete were prepared using the...Ch. 7 - Three batches of concrete were prepared using the...Ch. 7 - Prob. 7.45QPCh. 7 - Prob. 7.46QPCh. 7 - Discuss two nondestructive tests to be performed...Ch. 7 - Discuss the concept of concrete maturity meters.Ch. 7 - Discuss four alternatives that increase the use...Ch. 7 - What is self-consolidating concrete? How are its...Ch. 7 - Prob. 7.51QPCh. 7 - Two 6 in. 12 in. concrete cylinders with randomly...Ch. 7 - Discuss the concept of high-performance concrete....Ch. 7 - Comparing PCC with mild steel, answer the...Ch. 7 - Prob. 7.55QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the collapse load (P) for the two fixed ended beam shown below. Use virtual work method P 2 m 4 m L=6marrow_forwardQuestion 1 (Approximate Method - Superposition). Using Superposition determine the displacement at C of this beam. El is constant. (Note - you must use the PE Handbook Shears, Moments and Deflection Tables. The FE handbook does not have one of these conditions) (On an exam I will make sure it is found in both the FE and the PE handbook). 60 kN 30 kN/m A C 3 m 3 m B Question 2 (Slope and Deflection - virtual work - statically determinate beam) Using virtual work determine the slope at A and the displacement at C of this beam. El is constant. Same beam as question #1arrow_forwardQuestion 4 (Force Method). Determine the reaction at the supports. Assume A is a pin and B and C are rollers. El is constant. 1.5 k A A 10 ft 10 ft B C - 20 ftarrow_forward
- Find the maximum load (collapse load) that can be carried by the simply supported beam shown below. P ↓ 3 m 3 marrow_forwardFind the maximum distributed load can be applied to the two fixed ends beam shown below. Wu L=6marrow_forwardIn excavation for a wall footing, the water table level was lowered from a depth of 1.0 m to a depth of 3.0 m in a clayey soil deposit. Considering that the soil has a water content of 28% when it is fully saturated, and above the water table the (dry) unit weight of the soil is 17 kN/m³. Assuming initially that all of the soil above the water table is dry, then compute the following: 1. The effective stress at a depth of 4.0 m after the lowering of the water table. Take Gs = 2.68. (Hints: w*Gs=Sr*e) 2. The increase in effective stress at a depth of 5 m. (You also need to plot the values of total vertical stress and effective vertical stress against depth before and after lowering the water table.)arrow_forward
- Calculate the collapse load (P) for the two fixed ended beam shown below. P 2 m 4 m L=6marrow_forwardThe vertical stress at a point in soil is σx =400 kN/m², Txz = 50kN/m² while the horizontal stress at the same point is σ =100 kN/m², Tzx = -50kN/m². (a) Draw the Mohr circle that describes the 2D stress state at the point. (b) Find the maximum shear stress that acts at the point and its orientation angle from the horizontal plane. (c) Find the principal stress (σ₁ and σ3) that acts at the point and locate the major principal stress plane and its orientation angle from the horizontal plane (Use the pole method). (d) Determine both the normal and shear stress at a plane that orientates from the major principal stress plane with an angle of 30° (counterclockwise direction) and verify your results with the stress transformation equations.arrow_forward2: A billboard 2 m high x 4 m wide is supported on each end by a pin jointed assembly (bracing not shown for simplification). Total weight of billboard is 32 kN. Given: H = 1m; Angle φ = 60⁰; q = 2.4 kPa.1. Determine the normal stress (MPa) in strut AB with crosssectional dimension 6 mm x 50 mm.2. Determine the normal stress (MPa) in strut BC with crosssectional dimension 8 mm x 40 mm.3. Determine the required diameter (mm) of pin (under double shear) to be used in A or C if the allowable shear stress of the pin is 120 MPa.arrow_forward
- A total load of 900 kN is uniformly distributed over a rectangular footing of size 2 mx3 m. Find the vertical stress at a depth of 1.0 m below the footing at point C, under one corner, and D, under the center. If another footing of size 1 m × 3 m with a total load of 450 kN is constructed adjoining the previous footing, what is the vertical stress at the corner point E at the same depth due to the construction of these two footings. k 3 m 1m 2m E 3 marrow_forwardA soil profile is shown below. If a uniformly distributed load Aσ is applied at the ground surface, what is the settlement of the clay layer caused by primary consolidation if a. The clay is normally consolidated b. The clay is over-consolidated with σzc=200 kPa c. The clay is over-consolidated with σzc=150 kPa (Take Cr 0.03 and Cc = 0.15) Ao 100 kN/m² 2 m 4 m 3.5 m Sand Clay Xtry 14 kN/m³ Groundwater table Yat 18 kN/m³ Yat 19 kN/m³ Void ratio, e 0.8arrow_forwardAn existing 4-lane freeway (2 lanes in each direction) is to be expanded. The segment length is 2 mi (3.2 km); sustained grade: 4%; design volume of 3000 veh/h; trucks: 10%; . buses: 2%; RVs: 3%; PHF: 0.95; free-flow speed: 70 mi/h (112 km/h); right side lateral obstruction: 5 ft (1.5 m); design LOS: B. Determine number of additional lanes required in each directionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Fundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
Architectural Drafting and Design (MindTap Course...
Civil Engineering
ISBN:9781285165738
Author:Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
What is Concrete?; Author: Practical Engineering;https://www.youtube.com/watch?v=UOHURuAf5iY;License: Standard Youtube License