The design engineer specifies a concrete strength of 5500 psi. Determine the required average compressive strength for:
- a. a new plant where s is unknown
- b. a plant where s = 500 psi for 22 test results
- c. a plant with extensive history of producing concrete with s = 400 psi
- d. a plant with extensive history of producing concrete with s = 600 psi
(a)
The required average compressive strength for a new plant when standard deviation (s) is unknown.
Answer to Problem 7.1QP
The required average compressive strength for a new plant when s is unknown is
Explanation of Solution
Given information:
The concrete strength
Calculation:
Determine the required average compressive strength for a new plant
Here, s is the standard deviation.
Take standard deviation as 1,400 psi for compressive strength greather then 5,000 psi.
Substitute 5,500 psi for
Therefore, required average compressive strength for a new plant when standard deviation (s) is unknown is
(b)
The required average compressive strength for a new plant when standard deviation (s) is 500 psi.
Answer to Problem 7.1QP
The required average compressive strength for a new plant when standard deviation (s) is 500 psi
Explanation of Solution
Given information:
The concrete strength
Calculation:
Determine the modification factor for 22 number of test
Here,
Substitute 1.03 for
Determine the modified standard deviation
Substitute 500 psi for s and 1.06 for
Determine the required average compressive strength for a new plant
Here, s is the standard deviation.
Substitute 5,500 psi for
Determine the required average compressive strength for a new plant
Substitute 5,500 psi for
Take the maximum value from the calculated
Use
Therefore, the required average compressive strength for a new plant when standard deviation (s) is 500 psi is
(c)
The required average compressive strength for a plant with extensive history of producing concrete with standard deviation (s) of 400 psi.
Answer to Problem 7.1QP
The required average compressive strength for a plant with extensive history of producing concrete with standard deviation (s) of 400 psi is
Explanation of Solution
Given information:
The concrete strength
Calculation:
Determine the required average compressive strength for a new plant
Substitute 5,500 psi for
Determine the required average compressive strength for a new plant
Substitute 5,500 psi for
Take the maximum value from the calculated
Use
Therefore, the required average compressive strength for a plant with extensive history of producing concrete with standard deviation (s) of 400 psi is
(d)
The required average compressive strength for a plant with extensive history of producing concrete with standard deviation (s) of 600 psi.
Answer to Problem 7.1QP
The required average compressive strength for a plant with extensive history of producing concrete with standard deviation (s) of 600 psi is
Explanation of Solution
Given information:
The concrete strength
Calculation:
Determine the required average compressive strength for a new plant
Substitute 5,500 psi for
Determine the required average compressive strength for a new plant
Substitute 5,500 psi for
Take the maximum value from the calculated
Use
Therefore, the required average compressive strength for a plant with extensive history of producing concrete with standard deviation (s) of 600 psi is
Want to see more full solutions like this?
Chapter 7 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Additional Engineering Textbook Solutions
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Electric Circuits. (11th Edition)
Management Information Systems: Managing The Digital Firm (16th Edition)
Starting Out with Python (4th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- Calculate the modulus of elasticity Ec of lightweight concrete that has a unit weight of 110 pcf and compare it to the modulus of elasticity Ec of a normal weight concrete. Both concretes have compressive strengths (f’c) of 4000 psi. Express the solutions in psi units. Please also explain why the values are different.arrow_forwardThe design engineer specifies a concrete strength of 31.0 MPa (4500 psi). Determine the required average compressive strength for:a. a new plant for which s is unknownb. a plant for which s = 3.6 MPa (520 psi) for 17 test resultsc. a plant with extensive history of producing concrete with s = 2.4 MPa (350 psi)d. a plant with extensive history of producing concrete with s = 3.8 MPa (550 psi)arrow_forwardEstimate the modulus of elasticity for concrete with a density of 120 lb/ft3 and a 28-day maximum compressive strength of 3500 psi.arrow_forward
- Problem 2: If f = 3 ksi what is the modulus of elasticity Ec and the maximum tensile stress fr that the concrete can carry before cracking (use ACI recommended equations). Assume a unit weight of the plain concrete is: a. Wc = 90- b. w lb lb 118- ft39 ft3) C. W = 160- Problem 3: Wight 3-6 Rugblom 4: Wight ? 7 lb ft3arrow_forwardChapter 13 Question: What is the elasticity of concrete for a normal weight mix (unit weight equal to 150 pcf) with a compressive strength of 5,000 psi? O 3.644 ksi O 4.074 ksi 4,287 ksi O 3.976 ksi O 3,834 ksiarrow_forwardDiscuss the different types of concrete. a. Plain concrete vs reinforced concrete b. Fiber-reinforced concrete c. High-strength concrete d. Green concretearrow_forward
- 6. Discuss the different types of volume change in concrete at early and long-term ages.arrow_forwardQ- The maximum applied load on a cylindrical concrete specimen of diameter 150 mm and length 300 mm tested as per the split tensile strength test guidelines of IS 5816:1999 is 157 kN. The split tensile strength (in MPa, round off to one decimal place) of the specimen is?arrow_forwardWhich strain and stress profiles shown in the figure below best represent a reinforced concrete section subjected to flexure at the ultimate limit state?arrow_forward
- USE NSCP 2015 as reference: D. Minimum/maximum value of concrete strain(ec), (from nscp2015) E.Values of concrete and steel Modulus of Elasticity (E). F. Two values of minimum steel area (Asmin).arrow_forward1 - please show complete solution, thanks!arrow_forwardIntroduction on concrete cube test.arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning