Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 7.39QP
To evaluate the effect of a certain admixture on the flexure strength of concrete, two mixes were prepared, one without admixture and one with admixture. Three beams were prepared of each mix. All the beams had a cross section of 4 in. × 4 in. and a span of 12 in. The third-point loading flexure strength test was performed on each beam after 7 days of curing. The loads at failure of the beams without admixture were 6044, 5071, and 5934 lb, while the loads at failure of beams with admixture were 7299, 7305, and 6983. Determine:
- a. The modulus of rupture of each beam in psi.
- b. The average moduli of rupture of the beams without and with admixture.
- c. The percent of increase of the average modulus of rupture due to adding the admixture.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To evaluate the effect of a certain admixture on the flexure strength of concrete, two mixes were prepared, one without admixture and one with admixture.Three beams were prepared of each mix. All the beams had a cross section of 0.15 m by 0.15 m and a span of 0.45 m. The third-point loading flexure strength test was performed on each beam after 7 days of curing. The loads at failure of the beams without admixture were 32.8, 34.5, and 31.7 kN, while the loads at failure of beams with admixture were 39.4, 35.6, and 35.0 kN. Determine:a. The modulus of rupture of each beam in MPa.b. The average moduli of rupture of the beams without and with admixture.c. The percent of increase of the average modulus of rupture due to addingthe admixture.
To evaluate the effect of a certain admixture on the flexure strength of concrete, two mixes were prepared, one without admixture and one with admixture. Three beams were prepared of each mix. All the beams had a cross section of 0.15 m by 0.15 m and a span of 0.45 m. The third-point loadingflexure strength test was performed on each beam after 7 days of curing. The loads at failure of the beams without admixture were 32.8, 34.5, and 31.7 kN, while the loads at failure of beams with admixture were 39.4, 35.6, and 35.0 kN. Determine:a. The modulus of rupture of each beam in MPa.b. The average moduli of rupture of the beams without and with admixture.c. The percent of increase of the average modulus of rupture due to adding the admixture.
To evaluate the effect of a certain admixture on the flexure strength of concrete, two mixes were prepared, one without admixture and one with admixture.Three beams were prepared of each mix. All the beams had a cross section of 4 in. * 4 in. and a span of 12 in. The third-point loading flexure strength test was performed on each beam after 7 days of curing. The loads at failure of the beams without admixture were 6044, 5071, and 5934 lb, while the loads at failure of beams with admixture were 7299, 7305, and 6983. Determine:a. The modulus of rupture of each beam in psi.b. The average moduli of rupture of the beams without and with admixture.c. The percent of increase of the average modulus of rupture due to adding the admixture.
Chapter 7 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 7 - The design engineer specifies a concrete strength...Ch. 7 - A project specifies a concrete strength of 24.1...Ch. 7 - A project specifies a concrete strength of at...Ch. 7 - What is your recommendation for the maximum size...Ch. 7 - A concrete mix with a 3-in. slump, w/c ratio of...Ch. 7 - Prob. 7.6QPCh. 7 - You are working on a concrete mix design that...Ch. 7 - Design the concrete mix according to the following...Ch. 7 - Design the concrete mix according to the following...Ch. 7 - The design of a concrete mix requires 1173 kg/m3...
Ch. 7 - Prob. 7.11QPCh. 7 - Prob. 7.12QPCh. 7 - Students in the materials lab mixed concrete with...Ch. 7 - Students in the materials lab mixed concrete with...Ch. 7 - Why is it necessary to measure the air content of...Ch. 7 - What do we mean by curing concrete? What will...Ch. 7 - Discuss five different methods of concrete curing.Ch. 7 - Draw a graph showing the typical relation between...Ch. 7 - Why is extra water harmful to fresh concrete, but...Ch. 7 - Discuss the change in volume of concrete at early...Ch. 7 - Discuss the creep response of concrete structures....Ch. 7 - Prob. 7.22QPCh. 7 - On one graph, draw a sketch showing the typical...Ch. 7 - Using Figure 7.34, a. Determine the ultimate...Ch. 7 - Three concrete mixes with the same ingredients,...Ch. 7 - Three concrete mixes with the same ingredients,...Ch. 7 - Three 100 mm 200 mm concrete cylinders with water...Ch. 7 - Students in the materials class prepared three 4 ...Ch. 7 - Three 150 mm 300 mm concrete cylinders with water...Ch. 7 - Three 6 in. 12 in. concrete cylinders with water...Ch. 7 - A normal-weight concrete has an average...Ch. 7 - Discuss the significance of the compressive...Ch. 7 - What is the standard size of PCC specimens to be...Ch. 7 - Prob. 7.34QPCh. 7 - What is the purpose of performing the flexure test...Ch. 7 - What are the advantages of using a third-point...Ch. 7 - Consider a standard flexural strength specimen of...Ch. 7 - To evaluate the effect of a certain admixture on...Ch. 7 - To evaluate the effect of a certain admixture on...Ch. 7 - Prob. 7.40QPCh. 7 - Prob. 7.41QPCh. 7 - A normal-weight concrete has an average...Ch. 7 - Three batches of concrete were prepared using the...Ch. 7 - Three batches of concrete were prepared using the...Ch. 7 - Prob. 7.45QPCh. 7 - Prob. 7.46QPCh. 7 - Discuss two nondestructive tests to be performed...Ch. 7 - Discuss the concept of concrete maturity meters.Ch. 7 - Discuss four alternatives that increase the use...Ch. 7 - What is self-consolidating concrete? How are its...Ch. 7 - Prob. 7.51QPCh. 7 - Two 6 in. 12 in. concrete cylinders with randomly...Ch. 7 - Discuss the concept of high-performance concrete....Ch. 7 - Comparing PCC with mild steel, answer the...Ch. 7 - Prob. 7.55QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- To evaluate the effect of a certain admixture on the flexure strength of concrete, two mixes were prepared, one without admixture and one with admixture. Three beams were prepared of each mix. All the beams had a cross sectionof 0.15 m by 0.15 m and a span of 0.45 m. The third-point loading flexurestrength test was performed on each beam after 7 days of curing. The loads atfailure of the beams without admixture were 32.8, 34.5, and 31.7 kN, whilethe loads at failure of beams with admixture were 39.4, 35.6, and 35.0 kN.Determine:a. The modulus of rupture of each beam in MPa.b. The average moduli of rupture of the beams without and with admixture.c. The percent of increase of the average modulus of rupture due to addingthe admixture.arrow_forwardIf you knew that the cubic compressive strength of a certain type of concrete is 35 MPa, then calculate the resulting load during the examination, the maximum force applied by the test device)? 1- Fission tensile test 2- Fault modulus test 3- Compressive test for cylinderarrow_forwardA project specifies a concrete strength of at least 20.7 MPa. Materials engineers will design the mix for a strength higher than that. Calculate the required average compressive strength of the mix design if the standard deviation is s = 2.4 MPa. Estimate the modulus of elasticity of the concrete at the required average compressive strength (the calculated strength, not the given strength).arrow_forward
- Q3: B: Design the concrete mix according to the following conditions: Design Environment Building frame Required design strength = 27.6 MPa Minimum dimension = 150 mm Minimum space between rebar = 40 mm Minimum cover over rebar = 40 mm Statistical data indicate a standard deviation of compressive strength of 2.1 MPa is expected (more than 30 samples). Only air entrainer is allowed. Available Materials Air entrainer: Manufacture specification 6.3 ml/1% air/100 kg cement. Coarse aggregate: 19 mm nominal maximum size, river gravel (rounded) Bulk oven-dry specific gravity = 2.55, absorption = 3.6, Oven-dry rodded density = 1761 kg/m3 %3D Moisture content = 2.5, Fine aggregate: Natural sand Bulk oven-dry specific gravity 2.659, absorption=0.5, Moisture content = 2, Fineness modulus = 2.47arrow_forwardComparing PCC with mild steel, answer the following questions:a. Which one is stronger?b. Which one has a higher modulus or stiffness?c. Which one is more brittle?d. What is the range of compressive strength for a typical PCC?e. What is the compressive strength for a high-strength concrete?f. What would be a reasonable range for PCC modulus?arrow_forwardA normal-weight concrete has an average compressive strength of 4500 psi. What is the estimated modulus of elasticity? What is the estimated tensile strength of this concrete?arrow_forward
- A concrete cylinder of diameter 150mm and length 300mm when subjected to an axial compressive load of 240KN resulted in an increase of diameter by 0.127mm and a decrease in length of 0.28mm.compute the values 1.poison ratio 2.modulus elasticityarrow_forwardCalculate the modulus of elasticity Ec of lightweight concrete that has a unit weight of 110 pcf and compare it to the modulus of elasticity Ec of a normal weight concrete. Both concretes have compressive strengths (f’c) of 4000 psi. Express the solutions in psi units. Please also explain why the values are different.arrow_forwardanswer very fastarrow_forward
- Design the concrete mix according to the following conditions:Design EnvironmentPavement slab, subjected to freezingRequired design strength = 21 MPaSlab thickness = 300 mmStatistical data indicate a standard deviation of compressive strength of1.7 MPa is expected (more than 30 samples).Only air entrainer is allowed.Available MaterialsAir entrainer: Manufacture specification is 9.5 mL/1% air/100 kgcement.Coarse aggregate: 2 in. nominal maximum size, crushed stoneBulk oven-dry specific gravity = 2.573, absorption = 2.8,Oven-dry rodded density = 1922 kg/m3Moisture content = 1,Fine aggregate: Natural sandBulk oven-dry specific gravity = 2.540, absorption = 3.4,Moisture content = 4.5,Fineness modulus = 2.68arrow_forwardDesign the concrete mix according to the following conditions: Design Environment Building frame Required design strength = 27.6 MPa Minimum dimension = 150 mm Minimum space between rebar = 40 mm Minimum cover over rebar = 40 mm Statistical data indicate a standard deviation of compressive strength of 2.1 MPa is expected (more than 30 samples). Only air entrainer is allowed. Available Materials Air entrainer: Manufacture specification 6.3 ml/1% air/100 kg cement. Coarse aggregate: 19 mm nominal maximum size, river gravel (rounded) Bulk oven-dry specific gravity = 2.55, Absorption = 0.3% Oven-dry rodded density = 1761 kg/m3 Moisture content = 2% Fineness modulus = 2.47arrow_forwardDesign the concrete mix according to the following conditions:Design EnvironmentPavement slab, Bozeman, Montana (cold climate)Required design strength = 3000 psiSlab thickness = 12 in.Statistical data indicate a standard deviation of compressive strength of250 psi is expected (more than 30 samples).Only air entrainer is allowed.Available MaterialsAir entrainer: Manufacture specification is 0.15 fl oz/1% air/100 lb cement.Coarse aggregate: 2 in. nominal maximum size, crushed stoneBulk oven-dry specific gravity = 2.573, absorption = 2.8,Oven-dry rodded density = 120 pcfMoisture content = 1,Fine aggregate: Natural sandBulk oven-dry specific gravity = 2.540, absorption = 3.4,Moisture content = 4.5,Fineness modulus = 2.68arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Aggregates in Concrete Mix Design; Author: Tyler Ley;https://www.youtube.com/watch?v=sNz3kBKKpvw;License: Standard Youtube License