(a)
Whether h is a twice-differentiable function of x.
(a)
Answer to Problem 75E
The statement is true.
Explanation of Solution
Given information:
Where,
f has a negative derivative for all values of x and that
According to FTC (Fundamental Theorem of Calculus),
Then
Taking derivative again
According to the statement,
f has negative derivative for all values of x.
That means
Then
Therefore,
h is a twice differentiable function of x.
(b)
Whether h and
(b)
Answer to Problem 75E
The statement is true.
Explanation of Solution
Given information:
Where,
f has a negative derivative for all values of x and that
According to FTC (Fundamental Theorem of Calculus),
Then
Taking derivative again
Thus,
We have
Both
Therefore,
They both are continuous.
(c)
Whether the graph of h has a horizontal tangent at
(c)
Answer to Problem 75E
The statement is true.
Explanation of Solution
Given information:
Where,
f has a negative derivative for all values of x and that
If
h has a horizontal tangent at
Since
Then
According to the statement,
Therefore,
(d)
Whether h has
(d)
Answer to Problem 75E
The statement is true by the Second Derivative Test.
Explanation of Solution
Given information:
Where,
f has a negative derivative for all values of x and that
If
And
Then
h has a local maximum at
According to Part (c) result,
We have
Since
Then
According to the statement,
f has negative derivative for all values of x.
That means
Therefore,
(e)
Whether h has
(e)
Answer to Problem 75E
The statement is false by the Second Derivative Test.
Explanation of Solution
Given information:
Where,
f has a negative derivative for all values of x and that
If
And
Then
h has a local minimum at
According to Part (a) result,
We have
And
Then
And
According to statement,
Thus,
We also have
Thus,
Therefore,
h does not have a local minimum at
(f)
Whether the graph of h has an inflection point at
(f)
Answer to Problem 75E
The statement is false.
Explanation of Solution
Given information:
Where,
f has a negative derivative for all values of x and that
If
Then
h has an inflection point at
According to Part (a) result,
We have
And
Then
And
We also have
Thus,
Therefore,
h does not have an inflection point at
(g)
Whether the graph
(g)
Answer to Problem 75E
The statement is true.
Explanation of Solution
Given information:
Where,
f has a negative derivative for all values of x and that
We have
According to the statement,
f is a decreasing function.
That includes
Point (1, 0) because
Then
Therefore,
Chapter 6 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Calculus: Early Transcendentals (2nd Edition)
Calculus: Early Transcendentals (2nd Edition)
College Algebra (7th Edition)
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.arrow_forwardwrite it down for better understanding pleasearrow_forward1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a complete sentence, interpret the equation F(10) 68. (Remember this means explaining the meaning of the equation without using any mathy vocabulary!) Include units. (3 points) =arrow_forward
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forward
- • • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forwardThe value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning