Concept explainers
(a)
The upper estimate for the speed when t=5 using LRAM5
(a)
Answer to Problem 26E
The upper estimate for the speed when t=5 using LRAM5 is
Explanation of Solution
Given information:
Formula used:
The left-hand point rectangle approximation method (LRAM) is used.
Calculation:
For left-hand point rectangle approximation method (LRAM), area is divided into rectangles. Total time is divided into equal intervals and at left-hand point of interval calculates the velocity which is equal to height of rectangle then calculates the area or small rectangles then adds all the area. Total area gives the Speed. There is no need to measure height because we have recorded data.
Use LRAM with 5 equal subintervals. Take the value at left-end point of interval and add all the values then multiply with the length of subinterval which is unity.
Conclusion:
The upper estimate for the speed when t=5 using LRAM5 is
(a)
The lower estimate for the speed when t=5 using RRAM5
(a)
Answer to Problem 26E
The lower estimate for the speed when t=5 using RRAM5 is
Explanation of Solution
Given information:
Formula used:
The right-hand point rectangle approximation method (RRAM) is used.
< p>Calculation:For right-hand point rectangle approximation method (RRAM), area is divided into rectangles. Total time is divided into equal intervals and at right-hand point of interval calculates the velocity which is equal to height of rectangle then calculates the area or small rectangles then adds all the area. Total area gives the Speed. There is no need to measure height because we have recorded data.
Use RRAM with 5 equal subintervals. Take the value at right-end point of interval and add all the values then multiply with the length of subinterval which is unity.
Conclusion:
The lower estimate for the speed when t=5 using RRAM5 is
(c)
The upper estimate for the distance fallen when t=3.
(c)
Answer to Problem 26E
The distance fallen up to 3 second is 146.59 feet
Explanation of Solution
Given information:
Formula used:
The upper estimate formula is used.
Calculation:
Upper estimate for first second
Upper estimate for next second
Upper estimate for third second
So,
Upper estimate for the distance fallen up to 3 second
Conclusion:
The distance fallen up to 3 second is 146.59 feet
Chapter 6 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Thinking Mathematically (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Elementary Statistics
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Algebra and Trigonometry (6th Edition)
- Show that the Laplace equation in Cartesian coordinates: J²u J²u + = 0 მx2 Jy2 can be reduced to the following form in cylindrical polar coordinates: 湯( ди 1 8²u + Or 7,2 მ)2 = 0.arrow_forwardFind integrating factorarrow_forwardDraw the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote.arrow_forward
- Draw the asymptotes (if there are any). Then plot two points on each piece of the graph.arrow_forwardCancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (c) What is the maximum number of nonreal zeros that R (x) can have? ☐arrow_forward
- Suppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (b) What is the maximum number of real zeros that R (x) can have? ☐arrow_forwardi need help please dont use chat gptarrow_forward3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward
- 1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forward2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forwardA driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning