Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 12RE

(a)

To determine

To find: limnk=1n(ck)3Δx as a definite interval.

(a)

Expert Solution
Check Mark

Answer to Problem 12RE

  limnk=1n(ck)3Δx=010x3dx

Explanation of Solution

Given information:

The interval [0,10] is partitioned into n subintervals of length Δx=10n .

The Riemann Sum k=1n(ck)3Δx is formed by choosing each ck in the kth subinterval.

Theorem Used:

Definite Integral as limit of Riemann Sum:

If f(x) is continuous on [a,b] then a limit of the form limnk=1nf(ck)Δx on the interval [a,b] can be written as the integral abf(x)dx .

That is limnk=1nf(ck)Δx=abf(x)dx……… (1)

Limit of the given Riemann Sum is limnk=1n(ck)3Δx

Comparing it with standard equation in (1)

  f(ck)=ck3

That is, f(x)=x3

Since the given interval is [0,10] then a=0 and b=10

limnk=1n(ck)3Δx=010x3dx

(b)

To determine

To find: limnk=1nck(sinck)Δx as a definite interval.

(b)

Expert Solution
Check Mark

Answer to Problem 12RE

  limnk=1nck(sinck)Δx=010xsinxdx

Explanation of Solution

Given information:

The interval [0,10] is partitioned into n sub-intervals of length Δx=10n .

The Riemann Sum k=1nck(sinck)Δx is formed by choosing each ck in the kth subinterval.

Theorem Used:

Definite Integral as limit of Riemann Sum:

If f(x) is continuous on [a,b] then a limit of the form limnk=1nf(ck)Δx on the interval [a,b] can be written as the integral abf(x)dx .

That is limnk=1nf(ck)Δx=abf(x)dx……… (1)

Limit of the given Riemann Sum is limnk=1nck(sinck)Δx

Comparing it with standard equation in (1)

  f(ck)=ck(sinck)

That is, f(x)=xsinx

Since the given interval is [0,10] then a=0 and b=10

limnk=1nck(sinck)Δx=010xsinxdx

(c)

To determine

To find: limnk=1nck(3ck2)2Δx as a definite interval.

(c)

Expert Solution
Check Mark

Answer to Problem 12RE

  limnk=1nck(3ck2)2Δx=010x(3x2)2dx

Explanation of Solution

Given information:

The interval [0,10] is partitioned into n sub-intervals of length Δx=10n .

The Riemann Sum k=1nck(3ck2)2Δx is formed by choosing each ck in the kth subinterval.

Theorem Used:

Definite Integral as limit of Riemann Sum:

If f(x) is continuous on [a,b] then a limit of the form limnk=1nf(ck)Δx on the interval [a,b] can be written as the integral abf(x)dx .

That is limnk=1nf(ck)Δx=abf(x)dx……… (1)

Limit of the given Riemann Sum is limnk=1nck(3ck2)2Δx

Comparing it with standard equation in (1)

  f(ck)=ck(3ck2)2

That is, f(x)=x(3x2)2

Since the given interval is [0,10] , a=0 and b=10

limnk=1nck(3ck2)2Δx=010x(3x2)2dx

(d)

To determine

To find: limnk=1n(1+ck2)1Δx as a definite interval.

(d)

Expert Solution
Check Mark

Answer to Problem 12RE

  limnk=1n(1+ck2)1Δx=010(1+x2)1dx

Explanation of Solution

Given information:

The interval [0,10] is partitioned into n sub-intervals of length Δx=10n .

The Riemann Sum k=1n(1+ck2)1Δx is formed by choosing each ck in the kth subinterval.

Theorem Used:

Definite Integral as limit of Riemann Sum:

If f(x) is continuous on [a,b] then a limit of the form limnk=1nf(ck)Δx on the interval [a,b] can be written as the integral abf(x)dx .

That is limnk=1nf(ck)Δx=abf(x)dx……… (1)

Limit of the given Riemann Sum is limnk=1n(1+ck2)1Δx

Comparing it with standard equation in (1)

  f(ck)=(1+ck2)1

That is, f(x)=(1+x2)1

Since the given interval is [0,10] , a=0 and b=10

limnk=1n(1+ck2)1Δx=010(1+x2)1dx

(e)

To determine

To find: limnk=1nπ(9sin2(πck10))Δx as a definite interval.

(e)

Expert Solution
Check Mark

Answer to Problem 12RE

  limnk=1nπ(9sin2(πck10))Δx=010π(9sin2(πx10))dx

Explanation of Solution

Given information:

The interval [0,10] is partitioned into n sub-intervals of length Δx=10n .

The Riemann Sum k=1nπ(9sin2(πck10))Δx is formed by choosing each ck in the

  kth subinterval.

Theorem Used:

Definite Integral as limit of Riemann Sum:

If f(x) is continuous on [a,b] then a limit of the form limnk=1nf(ck)Δx on the interval [a,b] can be written as the integral abf(x)dx .

That is limnk=1nf(ck)Δx=abf(x)dx……… (1)

Limit of the given Riemann Sum is limnk=1nπ(9sin2(πck10))Δx

Comparing it with standard equation in (1)

  f(ck)=π(9sin2(πck10))

That is, f(x)=π(9sin2(πx10))

Since the given interval is [0,10] , a=0 and b=10

limnk=1nπ(9sin2(πck10))Δx=010π(9sin2(πx10))dx

Chapter 6 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 6.1 - Prob. 1ECh. 6.1 - Prob. 2ECh. 6.1 - Prob. 3ECh. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - Prob. 6ECh. 6.1 - Prob. 7ECh. 6.1 - Prob. 8ECh. 6.1 - Prob. 9ECh. 6.1 - Prob. 10ECh. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - Prob. 23ECh. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.2 - Prob. 1QRCh. 6.2 - Prob. 2QRCh. 6.2 - Prob. 3QRCh. 6.2 - Prob. 4QRCh. 6.2 - Prob. 5QRCh. 6.2 - Prob. 6QRCh. 6.2 - Prob. 7QRCh. 6.2 - Prob. 8QRCh. 6.2 - Prob. 9QRCh. 6.2 - Prob. 10QRCh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.2 - Prob. 3ECh. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Prob. 8ECh. 6.2 - Prob. 9ECh. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - Prob. 25ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.3 - Prob. 1QRCh. 6.3 - Prob. 2QRCh. 6.3 - Prob. 3QRCh. 6.3 - Prob. 4QRCh. 6.3 - Prob. 5QRCh. 6.3 - Prob. 6QRCh. 6.3 - Prob. 7QRCh. 6.3 - Prob. 8QRCh. 6.3 - Prob. 9QRCh. 6.3 - Prob. 10QRCh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Prob. 47ECh. 6.3 - Prob. 48ECh. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.3 - Prob. 1QQCh. 6.3 - Prob. 2QQCh. 6.3 - Prob. 3QQCh. 6.3 - Prob. 4QQCh. 6.4 - Prob. 1QRCh. 6.4 - Prob. 2QRCh. 6.4 - Prob. 3QRCh. 6.4 - Prob. 4QRCh. 6.4 - Prob. 5QRCh. 6.4 - Prob. 6QRCh. 6.4 - Prob. 7QRCh. 6.4 - Prob. 8QRCh. 6.4 - Prob. 9QRCh. 6.4 - Prob. 10QRCh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Prob. 35ECh. 6.4 - Prob. 36ECh. 6.4 - Prob. 37ECh. 6.4 - Prob. 38ECh. 6.4 - Prob. 39ECh. 6.4 - Prob. 40ECh. 6.4 - Prob. 41ECh. 6.4 - Prob. 42ECh. 6.4 - Prob. 43ECh. 6.4 - Prob. 44ECh. 6.4 - Prob. 45ECh. 6.4 - Prob. 46ECh. 6.4 - Prob. 47ECh. 6.4 - Prob. 48ECh. 6.4 - Prob. 49ECh. 6.4 - Prob. 50ECh. 6.4 - Prob. 51ECh. 6.4 - Prob. 52ECh. 6.4 - Prob. 53ECh. 6.4 - Prob. 54ECh. 6.4 - Prob. 55ECh. 6.4 - Prob. 56ECh. 6.4 - Prob. 57ECh. 6.4 - Prob. 58ECh. 6.4 - Prob. 59ECh. 6.4 - Prob. 60ECh. 6.4 - Prob. 61ECh. 6.4 - Prob. 62ECh. 6.4 - Prob. 63ECh. 6.4 - Prob. 64ECh. 6.4 - Prob. 65ECh. 6.4 - Prob. 66ECh. 6.4 - Prob. 67ECh. 6.4 - Prob. 68ECh. 6.4 - Prob. 69ECh. 6.4 - Prob. 70ECh. 6.4 - Prob. 71ECh. 6.4 - Prob. 72ECh. 6.4 - Prob. 73ECh. 6.4 - Prob. 74ECh. 6.4 - Prob. 75ECh. 6.4 - Prob. 76ECh. 6.4 - Prob. 77ECh. 6.4 - Prob. 78ECh. 6.4 - Prob. 79ECh. 6.5 - Prob. 1QRCh. 6.5 - Prob. 2QRCh. 6.5 - Prob. 3QRCh. 6.5 - Prob. 4QRCh. 6.5 - Prob. 5QRCh. 6.5 - Prob. 6QRCh. 6.5 - Prob. 7QRCh. 6.5 - Prob. 8QRCh. 6.5 - Prob. 9QRCh. 6.5 - Prob. 10QRCh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - Prob. 27ECh. 6.5 - Prob. 28ECh. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.5 - Prob. 35ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - Prob. 38ECh. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 1QQCh. 6.5 - Prob. 2QQCh. 6.5 - Prob. 3QQCh. 6.5 - Prob. 4QQCh. 6 - Prob. 1RECh. 6 - Prob. 2RECh. 6 - Prob. 3RECh. 6 - Prob. 4RECh. 6 - Prob. 5RECh. 6 - Prob. 6RECh. 6 - Prob. 7RECh. 6 - Prob. 8RECh. 6 - Prob. 9RECh. 6 - Prob. 10RECh. 6 - Prob. 11RECh. 6 - Prob. 12RECh. 6 - Prob. 13RECh. 6 - Prob. 14RECh. 6 - Prob. 15RECh. 6 - Prob. 16RECh. 6 - Prob. 17RECh. 6 - Prob. 18RECh. 6 - Prob. 19RECh. 6 - Prob. 20RECh. 6 - Prob. 21RECh. 6 - Prob. 22RECh. 6 - Prob. 23RECh. 6 - Prob. 24RECh. 6 - Prob. 25RECh. 6 - Prob. 26RECh. 6 - Prob. 27RECh. 6 - Prob. 28RECh. 6 - Prob. 29RECh. 6 - Prob. 30RECh. 6 - Prob. 31RECh. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Prob. 34RECh. 6 - Prob. 35RECh. 6 - Prob. 36RECh. 6 - Prob. 37RECh. 6 - Prob. 38RECh. 6 - Prob. 39RECh. 6 - Prob. 40RECh. 6 - Prob. 41RECh. 6 - Prob. 42RECh. 6 - Prob. 43RECh. 6 - Prob. 44RECh. 6 - Prob. 45RECh. 6 - Prob. 46RECh. 6 - Prob. 47RECh. 6 - Prob. 48RECh. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Prob. 51RECh. 6 - Prob. 52RECh. 6 - Prob. 53RECh. 6 - Prob. 54RECh. 6 - Prob. 55RECh. 6 - Prob. 56RECh. 6 - Prob. 57RECh. 6 - Prob. 58RECh. 6 - Prob. 59RECh. 6 - Prob. 60RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Definite Integral Calculus Examples, Integration - Basic Introduction, Practice Problems; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=rCWOdfQ3cwQ;License: Standard YouTube License, CC-BY