Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 46RE

(a)

To determine

Whether g is differentiable function of x .

(a)

Expert Solution
Check Mark

Answer to Problem 46RE

The statement is True.

Explanation of Solution

Given information:

  g(x)=0xf(t)dt

  f(x) has positive derivative for all values of x .

Such that

  f(1)=0

g is differentiable function if g’ is continuous.

Since

  g(x)=0xf(t)dt

Then

  g'(x)=ddx0xf(t)dt=f(x)

According the statement,

  f(x) is differentiable for all x .

Thus,

  f(x) is continuous for all x .

Since

  g'(x)=f(x)

Then

  g'(x) must also be continuous.

Therefore,

g is a differentiable function of x .

(b)

To determine

Whether g is a continuous function of x

(b)

Expert Solution
Check Mark

Answer to Problem 46RE

The statement is True.

Explanation of Solution

Given information:

  g(x)=0xf(t)dt

  f(x) has positive derivative for all values of x .

Such that

  f(1)=0

Since

  g(x)=0xf(t)dt

Then

  g'(x)=ddx0xf(t)dt=f(x)

According the statement,

  f(x) is differentiable for all x .

Thus,

  f(x) is continuous for all x .

Since

  g'(x)=f(x)

Then

  g'(x) must also be continuous.

We have already discussed in Part (a),

g is differentiable function if g’ is continuous.

Therefore,

g is a continuous function of x .

(c)

To determine

Whether the graph of g has a horizontal tangent line at x=1

(c)

Expert Solution
Check Mark

Answer to Problem 46RE

The statement is True.

Explanation of Solution

Given information:

  g(x)=0xf(t)dt

  f(x) has positive derivative for all values of x .

Such that

  f(1)=0

Since

  g(x)=0xf(t)dt

Then

  g'(x)=ddx0xf(t)dt=f(x)

According the statement,

  f(1)=0

Then

  g'(1)=f(1)=0

Therefore,

The graph of g has a horizontal tangent line at x=1 .

(d)

To determine

Whether g has a local maximum at x=1

(d)

Expert Solution
Check Mark

Answer to Problem 46RE

The statement is False.

Explanation of Solution

Given information:

  g(x)=0xf(t)dt

  f(x) has positive derivative for all values of x .

Such that

  f(1)=0

If g(x) has a local maximum at x=1 ,

Then

By the Second Derivative Test:

  g'(1)=0

And

  g''(1)<0

Since

  g(x)=0xf(t)dt

Then

  g'(x)=ddx0xf(t)dt=f(x)

According the statement,

  f(1)=0

Then

  g'(1)=f(1)=0

We also have

  f'(x)>0 for all x .

Such that

  g"(x)=f'(x)>0

Therefore,

  g(x) does not have a local maximum at x=1 .

(e)

To determine

Whether g has a local minimum at x=1

(e)

Expert Solution
Check Mark

Answer to Problem 46RE

The statement is True.

Explanation of Solution

Given information:

  g(x)=0xf(t)dt

  f(x) has positive derivative for all values of x .

Such that

  f(1)=0

If g(x) has a local minimum at x=1 ,

Then

By the Second Derivative Test:

  g'(1)=0

And

  g''(1)>0

Since

  g(x)=0xf(t)dt

Then

  g'(x)=ddx0xf(t)dt=f(x)

According the statement,

  f(1)=0

Then

  g'(1)=f(1)=0

We also have

  f'(x)>0 for all x .

Such that

  g"(x)=f'(x)>0

Thus,

  g"(1)=f'(1)>0

Therefore,

  g(x) does have a local minimum at x=1 .

(f)

To determine

Whether the graph of g has an infection point at x=1

(f)

Expert Solution
Check Mark

Answer to Problem 46RE

The statement is False.

Explanation of Solution

Given information:

  g(x)=0xf(t)dt

  f(x) has positive derivative for all values of x .

Such that

  f(1)=0

If g(x) has an inflection point at x=1 ,

Then

  g"(1)=0

However,

  g"(x)=f'(x)>0 for all values of x .

Such that

  g"(1)>0

Thus,

  g(x) does not have an inflection point at x=1 .

(g)

To determine

Whether the graph of dg/dx crosses the x − axis at x=1

(g)

Expert Solution
Check Mark

Answer to Problem 46RE

The statement is True.

Explanation of Solution

Given information:

  g(x)=0xf(t)dt

  f(x) has positive derivative for all values of x .

Such that

  f(1)=0

Since

  dgdx=g'(x)=f(x)

And

  f(1)=0

Then

  g'(1)=f(1)=0

  dgdx must contain the point (1,0).

Since

  f'(x)>0 for all x .

Then

  f(x) is a strictly increasing function.

Such that

Instead of the alternative of bouncing − off of the x − axis at (1, 0),

  f(x) crosses the x − axis at (1, 0).

Therefore,

  dgdx crosses the x − axis at (1, 0).

Chapter 6 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 6.1 - Prob. 1ECh. 6.1 - Prob. 2ECh. 6.1 - Prob. 3ECh. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - Prob. 6ECh. 6.1 - Prob. 7ECh. 6.1 - Prob. 8ECh. 6.1 - Prob. 9ECh. 6.1 - Prob. 10ECh. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - Prob. 23ECh. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.2 - Prob. 1QRCh. 6.2 - Prob. 2QRCh. 6.2 - Prob. 3QRCh. 6.2 - Prob. 4QRCh. 6.2 - Prob. 5QRCh. 6.2 - Prob. 6QRCh. 6.2 - Prob. 7QRCh. 6.2 - Prob. 8QRCh. 6.2 - Prob. 9QRCh. 6.2 - Prob. 10QRCh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.2 - Prob. 3ECh. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Prob. 8ECh. 6.2 - Prob. 9ECh. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - Prob. 25ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.3 - Prob. 1QRCh. 6.3 - Prob. 2QRCh. 6.3 - Prob. 3QRCh. 6.3 - Prob. 4QRCh. 6.3 - Prob. 5QRCh. 6.3 - Prob. 6QRCh. 6.3 - Prob. 7QRCh. 6.3 - Prob. 8QRCh. 6.3 - Prob. 9QRCh. 6.3 - Prob. 10QRCh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Prob. 47ECh. 6.3 - Prob. 48ECh. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.3 - Prob. 1QQCh. 6.3 - Prob. 2QQCh. 6.3 - Prob. 3QQCh. 6.3 - Prob. 4QQCh. 6.4 - Prob. 1QRCh. 6.4 - Prob. 2QRCh. 6.4 - Prob. 3QRCh. 6.4 - Prob. 4QRCh. 6.4 - Prob. 5QRCh. 6.4 - Prob. 6QRCh. 6.4 - Prob. 7QRCh. 6.4 - Prob. 8QRCh. 6.4 - Prob. 9QRCh. 6.4 - Prob. 10QRCh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Prob. 35ECh. 6.4 - Prob. 36ECh. 6.4 - Prob. 37ECh. 6.4 - Prob. 38ECh. 6.4 - Prob. 39ECh. 6.4 - Prob. 40ECh. 6.4 - Prob. 41ECh. 6.4 - Prob. 42ECh. 6.4 - Prob. 43ECh. 6.4 - Prob. 44ECh. 6.4 - Prob. 45ECh. 6.4 - Prob. 46ECh. 6.4 - Prob. 47ECh. 6.4 - Prob. 48ECh. 6.4 - Prob. 49ECh. 6.4 - Prob. 50ECh. 6.4 - Prob. 51ECh. 6.4 - Prob. 52ECh. 6.4 - Prob. 53ECh. 6.4 - Prob. 54ECh. 6.4 - Prob. 55ECh. 6.4 - Prob. 56ECh. 6.4 - Prob. 57ECh. 6.4 - Prob. 58ECh. 6.4 - Prob. 59ECh. 6.4 - Prob. 60ECh. 6.4 - Prob. 61ECh. 6.4 - Prob. 62ECh. 6.4 - Prob. 63ECh. 6.4 - Prob. 64ECh. 6.4 - Prob. 65ECh. 6.4 - Prob. 66ECh. 6.4 - Prob. 67ECh. 6.4 - Prob. 68ECh. 6.4 - Prob. 69ECh. 6.4 - Prob. 70ECh. 6.4 - Prob. 71ECh. 6.4 - Prob. 72ECh. 6.4 - Prob. 73ECh. 6.4 - Prob. 74ECh. 6.4 - Prob. 75ECh. 6.4 - Prob. 76ECh. 6.4 - Prob. 77ECh. 6.4 - Prob. 78ECh. 6.4 - Prob. 79ECh. 6.5 - Prob. 1QRCh. 6.5 - Prob. 2QRCh. 6.5 - Prob. 3QRCh. 6.5 - Prob. 4QRCh. 6.5 - Prob. 5QRCh. 6.5 - Prob. 6QRCh. 6.5 - Prob. 7QRCh. 6.5 - Prob. 8QRCh. 6.5 - Prob. 9QRCh. 6.5 - Prob. 10QRCh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - Prob. 27ECh. 6.5 - Prob. 28ECh. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.5 - Prob. 35ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - Prob. 38ECh. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 1QQCh. 6.5 - Prob. 2QQCh. 6.5 - Prob. 3QQCh. 6.5 - Prob. 4QQCh. 6 - Prob. 1RECh. 6 - Prob. 2RECh. 6 - Prob. 3RECh. 6 - Prob. 4RECh. 6 - Prob. 5RECh. 6 - Prob. 6RECh. 6 - Prob. 7RECh. 6 - Prob. 8RECh. 6 - Prob. 9RECh. 6 - Prob. 10RECh. 6 - Prob. 11RECh. 6 - Prob. 12RECh. 6 - Prob. 13RECh. 6 - Prob. 14RECh. 6 - Prob. 15RECh. 6 - Prob. 16RECh. 6 - Prob. 17RECh. 6 - Prob. 18RECh. 6 - Prob. 19RECh. 6 - Prob. 20RECh. 6 - Prob. 21RECh. 6 - Prob. 22RECh. 6 - Prob. 23RECh. 6 - Prob. 24RECh. 6 - Prob. 25RECh. 6 - Prob. 26RECh. 6 - Prob. 27RECh. 6 - Prob. 28RECh. 6 - Prob. 29RECh. 6 - Prob. 30RECh. 6 - Prob. 31RECh. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Prob. 34RECh. 6 - Prob. 35RECh. 6 - Prob. 36RECh. 6 - Prob. 37RECh. 6 - Prob. 38RECh. 6 - Prob. 39RECh. 6 - Prob. 40RECh. 6 - Prob. 41RECh. 6 - Prob. 42RECh. 6 - Prob. 43RECh. 6 - Prob. 44RECh. 6 - Prob. 45RECh. 6 - Prob. 46RECh. 6 - Prob. 47RECh. 6 - Prob. 48RECh. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Prob. 51RECh. 6 - Prob. 52RECh. 6 - Prob. 53RECh. 6 - Prob. 54RECh. 6 - Prob. 55RECh. 6 - Prob. 56RECh. 6 - Prob. 57RECh. 6 - Prob. 58RECh. 6 - Prob. 59RECh. 6 - Prob. 60RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY