Concept explainers
(a)
Particle’s velocity at time
(a)
Answer to Problem 59E
The velocity at
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
The velocity v of s is s’ .
Such that
Since
The velocity at
From the graph,
Thus,
The velocity at
(b)
Whether the acceleration of particle at time
(b)
Answer to Problem 59E
The acceleration of particle is positive at
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
The acceleration of s is s”.
Since
Then
According to FTC (Fundamental Theorem of Calculus),
Second derivative:
That means
From the graph,
The slope of f at 3 is positive.
Thus,
Therefore,
The acceleration of particle is positive at
(c)
Particle’s position at time
(c)
Answer to Problem 59E
Particle’s position at 3 seconds is −9 units.
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
The region between
Then
The position at 3 seconds:
Therefore,
Particle’s position at 3 seconds is −9 units.
(d)
Time during which the particle passes through the origin.
(d)
Answer to Problem 59E
Particle is at origin when
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
If the particle is at origin,
Then
Since
That means
We need to find some time t where the area between the f and x − axis is 0.
Note that
In the graph, the triangle between 0 and 3 has same area as the triangle between 3 and 6.
For both the triangle,
Base length is 5
And
Height is 6.
Since one triangle is above the x − axis (positive area) and one triangle is below the x − axis (negative axis), the net area is 0 when we add both the triangles.
Thus,
Therefore,
The particle is at origin when
(e)
Approximate the zero value of acceleration.
(e)
Answer to Problem 59E
The acceleration is zero when
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
If
Then
The acceleration will be zero.
Thus,
We are required to find the second derivative of s .
Since
Then
According to FTC (Fundamental Theorem of Calculus),
We have
Then
Second derivative:
This implies
If
Then
From the graph,
At
The slope of f is 0.
Thus,
We have
Therefore,
Acceleration is zero at 7 seconds.
(f)
Movement of the particle towards and away from the origin.
(f)
Answer to Problem 59E
The particle moves away from the origin in the positive direction on the interval [0, 3] and t > 6.
The particle moves towards the origin in the negative direction on the interval [3, 6].
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
Note that
Such that
Thus,
The particle is at origin at
And
If
The particle is moving towards the right.
If
The particle is moving towards the left.
On the interval [0, 3]:
We have
Thus,
The particle moves away from the origin in the negative direction.
Since it starts at 0 at
On the interval [3, 6]:
We have
And
Thus,
The particle moves towards the origin since it was on the negative coordinate axis and moved to the right.
For
Since
And
Thus,
The particle moves away from the origin in the positive direction since it was on the origin and then moved to the right.
(g)
Side of the origin for the particle at time
(g)
Answer to Problem 59E
The particle lies on positive side of the origin at time
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
Since the particle starts at the origin,
Then
Also,
The area below the x -axis between
Thus,
Therefore,
The particle lies on the positive side of the origin at 9 seconds.
Chapter 6 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
Elementary Statistics
A First Course in Probability (10th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Algebra and Trigonometry (6th Edition)
Elementary Statistics (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- • • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forwardThe value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forward
- A: Tan Latitude / Tan P A = Tan 04° 30'/ Tan 77° 50.3' A= 0.016960 803 S CA named opposite to latitude, except when hour angle between 090° and 270°) B: Tan Declination | Sin P B Tan 052° 42.1'/ Sin 77° 50.3' B = 1.34 2905601 SCB is alway named same as declination) C = A + B = 1.35 9866404 S CC correction, A+/- B: if A and B have same name - add, If different name- subtract) = Tan Azimuth 1/Ccx cos Latitude) Tan Azimuth = 0.737640253 Azimuth = S 36.4° E CAzimuth takes combined name of C correction and Hour Angle - If LHA is between 0° and 180°, it is named "west", if LHA is between 180° and 360° it is named "east" True Azimuth= 143.6° Compass Azimuth = 145.0° Compass Error = 1.4° West Variation 4.0 East Deviation: 5.4 Westarrow_forwardds 5. Find a solution to this initial value problem: 3t2, s(0) = 5. dt 6. Find a solution to this initial value problem: A' = 0.03A, A(0) = 100.arrow_forward2) Drive the frequency responses of the following rotor system with Non-Symmetric Stator. The system contains both external and internal damping. Show that the system loses the reciprocity property.arrow_forward
- 1) Show that the force response of a MDOF system with general damping can be written as: X liax) -Σ = ral iw-s, + {0} iw-s,arrow_forward3) Prove that in extracting real mode ø, from a complex measured mode o, by maximizing the function: maz | ቀÇቃ | ||.|| ||.||2 is equivalent to the solution obtained from the followings: max Real(e)||2arrow_forwardDraw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy. L1 (a) The line L₁ is tangent to the unit circle at the point 0.992 (b) The tangent line 4₁ has equation: y= 0.126 x +0.992 (c) The line L₂ is tangent to the unit circle at the point ( (d) The tangent line L₂ has equation: y= 0.380 x + x × x)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning