Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6.4, Problem 58E

(a)

To determine

Particle’s velocity at time t=5 .

(a)

Expert Solution
Check Mark

Answer to Problem 58E

The velocity at t=5 is 2m/s .

Explanation of Solution

Given information:

Position at time t (sec) of a particle moving along a coordinate axis:

  s=0tf(x)dx

Where,

f is the differentiable function

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 6.4, Problem 58E , additional homework tip  1

The velocity of s is s’.

Since

  s=0tf(x)dx

Then

According to FTC (Fundamental Theorem of Calculus),

  s'(t)=ddt(0tf(x)dx)=f(t)

The velocity at t=5 is s'(5) .

From the graph,

  s'(5)=f(5)=2

Thus,

The velocity at t=5 is 2m/s .

(b)

To determine

Whether the acceleration of particle at time t=5 positive or negative.

(b)

Expert Solution
Check Mark

Answer to Problem 58E

The acceleration of particle is negative at t=5 .

Explanation of Solution

Given information:

Position at time t (sec) of a particle moving along a coordinate axis:

  s=0tf(x)dx

Where,

f is the differentiable function

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 6.4, Problem 58E , additional homework tip  2

The acceleration of s is s”.

Since

  s=0tf(x)dx

Then

According to FTC (Fundamental Theorem of Calculus),

  s'(t)=ddt(0tf(x)dx)=f(t)

Second derivative:

  s''(t)=ddt[f(t)]=f'(t)

That means

  s''(5)=f'(5)

From the graph,

The slope of f at 5 is negative.

Thus,

  s''(5) is negative.

Therefore,

The acceleration of particle is negative at t=5 .

(c)

To determine

Particle’s position at time t=3 .

(c)

Expert Solution
Check Mark

Answer to Problem 58E

Particle’s position at 3 seconds is 4.5.

Explanation of Solution

Given information:

Position at time t (sec) of a particle moving along a coordinate axis:

  s=0tf(x)dx

Where,

f is the differentiable function

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 6.4, Problem 58E , additional homework tip  3

The region between x=0 and x=3 is a right angle triangle, with base of 3 and the height of 3.

Then

The position at 3 seconds:

  s(3)=03f(x)dx=12×3×3=92=4.5

Therefore,

Particle’s position at 3 seconds is 4.5.

(d)

To determine

Time during the first 9 sec for s have its largest value.

(d)

Expert Solution
Check Mark

Answer to Problem 58E

The largest value for s occurs at t=6 .

Explanation of Solution

Given information:

Position at time t (sec) of a particle moving along a coordinate axis:

  s=0tf(x)dx

Where,

f is the differentiable function

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 6.4, Problem 58E , additional homework tip  4

s will have the largest value when it reaches the absolute maximum.

In order to know where the maximum occurs,

We are required to find at what value of t the first derivative of s switches from being positive to negative.

Since

  s=0tf(x)dx

Then

According to FTC (Fundamental Theorem of Calculus),

  s'(t)=ddt(0tf(x)dx)=f(t)

From the graph,

f is positive for 0 to 6 and negative for 6 to 9.

Therefore,

  t=6 is the location of a maximum.

For t=6 to be absolute maximum and not a local maximum,

s must be larger at t=6 then it is at its endpoints.

Since

  s'>0 for 0<t<6 ,

Then

  s(0)<s(6)

Since

  s'<0 for 6<t<9 ,

Then

  s(6)>s(9)

Thus,

s is larger at t=6 at its endpoints.

Therefore,

The largest value for s occurs at t=6 .

(e)

To determine

Approximate the zero value of acceleration.

(e)

Expert Solution
Check Mark

Answer to Problem 58E

The acceleration is zero when t=4 and t=7 .

Explanation of Solution

Given information:

Position at time t (sec) of a particle moving along a coordinate axis:

  s=0tf(x)dx

Where,

f is the differentiable function

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 6.4, Problem 58E , additional homework tip  5

Since

At t=4

We have

  s''(t)=f'(t)=0

Also,

At t=7

We have

  s''(t)=f'(t)=0

Therefore,

Acceleration is zero at both 4 seconds and 7 seconds.

(f)

To determine

Movement of the particle towards and away from the origin.

(f)

Expert Solution
Check Mark

Answer to Problem 58E

The particle moves away from the origin in the positive direction on the interval [0, 6].

The particle moves towards the origin in the negative direction on the interval [6, 9].

Explanation of Solution

Given information:

Position at time t (sec) of a particle moving along a coordinate axis:

  s=0tf(x)dx

Where,

f is the differentiable function

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 6.4, Problem 58E , additional homework tip  6

Note that

  s(0)=0

Such that

The particle is at origin at t=0 .

On the interval [0, 6]:

We have

  s'(t)=f(t)>0

Thus,

The particle moves away from the origin in the positive direction.

On the interval [6, 9]:

We have

  s'(t)=f(t)<0

Also,

The area below the x-axis is smaller above the x-axis.

Thus,

The particle moves towards the origin in negative direction.

(g)

To determine

Side of the origin for the particle at time t=9 .

(g)

Expert Solution
Check Mark

Answer to Problem 58E

The particle lies on positive side of the origin at time t=9 .

Explanation of Solution

Given information:

Position at time t (sec) of a particle moving along a coordinate axis:

  s=0tf(x)dx

Where,

f is the differentiable function

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 6.4, Problem 58E , additional homework tip  7

Since the particle starts at the origin,

Then

  s(0)=00f(x)dx=0

Also,

The area below the x-axis between x=6 and x=9 is smaller than the area above x-axis between x=0 and x=6 .

Thus,

  s(9)=09f(x)dx>0

Therefore,

The particle lies on the positive side of the origin at 9 seconds.

Chapter 6 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 6.1 - Prob. 1ECh. 6.1 - Prob. 2ECh. 6.1 - Prob. 3ECh. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - Prob. 6ECh. 6.1 - Prob. 7ECh. 6.1 - Prob. 8ECh. 6.1 - Prob. 9ECh. 6.1 - Prob. 10ECh. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - Prob. 23ECh. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Prob. 35ECh. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Prob. 39ECh. 6.1 - Prob. 40ECh. 6.2 - Prob. 1QRCh. 6.2 - Prob. 2QRCh. 6.2 - Prob. 3QRCh. 6.2 - Prob. 4QRCh. 6.2 - Prob. 5QRCh. 6.2 - Prob. 6QRCh. 6.2 - Prob. 7QRCh. 6.2 - Prob. 8QRCh. 6.2 - Prob. 9QRCh. 6.2 - Prob. 10QRCh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.2 - Prob. 3ECh. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Prob. 8ECh. 6.2 - Prob. 9ECh. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - Prob. 25ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.3 - Prob. 1QRCh. 6.3 - Prob. 2QRCh. 6.3 - Prob. 3QRCh. 6.3 - Prob. 4QRCh. 6.3 - Prob. 5QRCh. 6.3 - Prob. 6QRCh. 6.3 - Prob. 7QRCh. 6.3 - Prob. 8QRCh. 6.3 - Prob. 9QRCh. 6.3 - Prob. 10QRCh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Prob. 47ECh. 6.3 - Prob. 48ECh. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.3 - Prob. 1QQCh. 6.3 - Prob. 2QQCh. 6.3 - Prob. 3QQCh. 6.3 - Prob. 4QQCh. 6.4 - Prob. 1QRCh. 6.4 - Prob. 2QRCh. 6.4 - Prob. 3QRCh. 6.4 - Prob. 4QRCh. 6.4 - Prob. 5QRCh. 6.4 - Prob. 6QRCh. 6.4 - Prob. 7QRCh. 6.4 - Prob. 8QRCh. 6.4 - Prob. 9QRCh. 6.4 - Prob. 10QRCh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Prob. 35ECh. 6.4 - Prob. 36ECh. 6.4 - Prob. 37ECh. 6.4 - Prob. 38ECh. 6.4 - Prob. 39ECh. 6.4 - Prob. 40ECh. 6.4 - Prob. 41ECh. 6.4 - Prob. 42ECh. 6.4 - Prob. 43ECh. 6.4 - Prob. 44ECh. 6.4 - Prob. 45ECh. 6.4 - Prob. 46ECh. 6.4 - Prob. 47ECh. 6.4 - Prob. 48ECh. 6.4 - Prob. 49ECh. 6.4 - Prob. 50ECh. 6.4 - Prob. 51ECh. 6.4 - Prob. 52ECh. 6.4 - Prob. 53ECh. 6.4 - Prob. 54ECh. 6.4 - Prob. 55ECh. 6.4 - Prob. 56ECh. 6.4 - Prob. 57ECh. 6.4 - Prob. 58ECh. 6.4 - Prob. 59ECh. 6.4 - Prob. 60ECh. 6.4 - Prob. 61ECh. 6.4 - Prob. 62ECh. 6.4 - Prob. 63ECh. 6.4 - Prob. 64ECh. 6.4 - Prob. 65ECh. 6.4 - Prob. 66ECh. 6.4 - Prob. 67ECh. 6.4 - Prob. 68ECh. 6.4 - Prob. 69ECh. 6.4 - Prob. 70ECh. 6.4 - Prob. 71ECh. 6.4 - Prob. 72ECh. 6.4 - Prob. 73ECh. 6.4 - Prob. 74ECh. 6.4 - Prob. 75ECh. 6.4 - Prob. 76ECh. 6.4 - Prob. 77ECh. 6.4 - Prob. 78ECh. 6.4 - Prob. 79ECh. 6.5 - Prob. 1QRCh. 6.5 - Prob. 2QRCh. 6.5 - Prob. 3QRCh. 6.5 - Prob. 4QRCh. 6.5 - Prob. 5QRCh. 6.5 - Prob. 6QRCh. 6.5 - Prob. 7QRCh. 6.5 - Prob. 8QRCh. 6.5 - Prob. 9QRCh. 6.5 - Prob. 10QRCh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - Prob. 27ECh. 6.5 - Prob. 28ECh. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.5 - Prob. 35ECh. 6.5 - Prob. 36ECh. 6.5 - Prob. 37ECh. 6.5 - Prob. 38ECh. 6.5 - Prob. 39ECh. 6.5 - Prob. 40ECh. 6.5 - Prob. 1QQCh. 6.5 - Prob. 2QQCh. 6.5 - Prob. 3QQCh. 6.5 - Prob. 4QQCh. 6 - Prob. 1RECh. 6 - Prob. 2RECh. 6 - Prob. 3RECh. 6 - Prob. 4RECh. 6 - Prob. 5RECh. 6 - Prob. 6RECh. 6 - Prob. 7RECh. 6 - Prob. 8RECh. 6 - Prob. 9RECh. 6 - Prob. 10RECh. 6 - Prob. 11RECh. 6 - Prob. 12RECh. 6 - Prob. 13RECh. 6 - Prob. 14RECh. 6 - Prob. 15RECh. 6 - Prob. 16RECh. 6 - Prob. 17RECh. 6 - Prob. 18RECh. 6 - Prob. 19RECh. 6 - Prob. 20RECh. 6 - Prob. 21RECh. 6 - Prob. 22RECh. 6 - Prob. 23RECh. 6 - Prob. 24RECh. 6 - Prob. 25RECh. 6 - Prob. 26RECh. 6 - Prob. 27RECh. 6 - Prob. 28RECh. 6 - Prob. 29RECh. 6 - Prob. 30RECh. 6 - Prob. 31RECh. 6 - Prob. 32RECh. 6 - Prob. 33RECh. 6 - Prob. 34RECh. 6 - Prob. 35RECh. 6 - Prob. 36RECh. 6 - Prob. 37RECh. 6 - Prob. 38RECh. 6 - Prob. 39RECh. 6 - Prob. 40RECh. 6 - Prob. 41RECh. 6 - Prob. 42RECh. 6 - Prob. 43RECh. 6 - Prob. 44RECh. 6 - Prob. 45RECh. 6 - Prob. 46RECh. 6 - Prob. 47RECh. 6 - Prob. 48RECh. 6 - Prob. 49RECh. 6 - Prob. 50RECh. 6 - Prob. 51RECh. 6 - Prob. 52RECh. 6 - Prob. 53RECh. 6 - Prob. 54RECh. 6 - Prob. 55RECh. 6 - Prob. 56RECh. 6 - Prob. 57RECh. 6 - Prob. 58RECh. 6 - Prob. 59RECh. 6 - Prob. 60RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY