(a)
Interpretation:
The number of ions that is present in one formula unit of the given salt of
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.
(b)
Interpretation:
The number of ions that is present in one formula unit of the given salt of carboxylic acid has to be given.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.
(c)
Interpretation:
The number of ions that is present in one formula unit of the given salt of carboxylic acid has to be given.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.
(d)
Interpretation:
The number of ions that is present in one formula unit of the given salt of carboxylic acid has to be given.
Concept Introduction:
The name of the carboxylic acid itself implies that it is acidic. Addition of carboxylic acid to water results in ionization. Hydrogen ion transfer occurs from carboxylic acid to water and hydronium ion is formed. Carboxylate ion is also formed due to the loss of hydrogen ion from carboxylic acid.
Carboxylate ion is the negative ion which is formed when one or more acidic protons are lost from carboxylic acid. Similar to carboxylic acid it reacts with strong base to form carboxylic acid salt and water.
If the negative ion contains two carboxylate groups in it then it is a dicarboxylate. The parent acid of this has to be dicarboxylic acid. If the negative ion contains one carboxylate group in it then it is a monocarboxylate. The parent acid of this has to be monocarboxylic acid.
This can also be found from the name of the salt given. If the IUPAC name contains suffix “-ate” alone means it is a salt of monocarboxylic acid. If the IUPAC name contains prefix “di-” that is preceded by “-ate” in the ending means it is a salt dicarboxylic acid.
Total number of ions in one formula unit of carboxylic acid salt is found by counting the number of discrete ions present in the structure.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- The electrons flow from the electron-rich atoms of the nucleophile to the electrons poor atoms of the alkyl halide. Identify the electron rich in the nucleophile. Enter the element symbol only, do not include any changes.arrow_forwardHello, I am doing a court case analysis in my Analytical Chemistry course. The case is about a dog napping and my role is prosecution of the defendant. I am tasked in the Area of Expertise in Neutron Activation and Isotopic Analysis. Attached is the following case study reading of my area of expertise! The landscaping stone was not particularly distinctive in its decoration but matched both the color and pattern of the Fluential’s landscaping stone as well as the stone in the back of the recovered vehicle. Further analysis of the stone was done using a technique called instrumental neutron activation analysis. (Proceed to Neutron Activation data) Photo Notes: Landscaping stone recovered in vehicle. Stone at Fluential’s home is similar inappearance. Finally, the white paint on the brick was analyzed using stable isotope analysis. The brick recovered at the scene had smeared white paint on it. A couple of pieces of brick in the back of the car had white paint on them. They…arrow_forwardCite the stability criteria of an enamine..arrow_forward
- What would you expect to be the major product obtained from the following reaction? Please explain what is happening here. Provide a detailed explanation and a drawing showing how the reaction occurs. The correct answer to this question is V.arrow_forwardPlease answer the question for the reactions, thank youarrow_forwardWhat is the product of the following reaction? Please include a detailed explanation of what is happening in this question. Include a drawing showing how the reagent is reacting with the catalyst to produce the correct product. The correct answer is IV.arrow_forward
- Please complete the reactions, thank youarrow_forwardConsider the synthesis. What is compound Y? Please explain what is happening in this question. Provide a detailed explanation and a drawing to show how the compound Y creates the product. The correct answer is D.arrow_forwardWhat would be the major product of the following reaction? Please include a detailed explanation of what is happening in this question. Include steps and a drawing to show this reaction proceeds and how the final product is formed. The correct answer is B. I put answer D and I don't really understand what is going on in the question.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning



