
Concept explainers
(a)
Interpretation:
Physical state at room temperature for oxalic acid has to be given.
Concept Introduction:
Physical property of
(b)
Interpretation:
Physical state at room temperature for decanoic acid has to be given.
Concept Introduction:
Physical property of carboxylic acid is decided by the carbon chain and the functional group. Carboxylic acids are highly polar, as the carboxyl group is more polar. Due to this polar nature, the melting and boiling point are very high. Monocarboxylic acids that are unsubstituted which contains up to nine carbon atoms are present in liquid state. They have very sharp odor. Monocarboxylic acids that have more than ten carbon atoms in an unbranched fashion are waxy solids. They do not have any odor because of low volatility. Similar to this, dicarboxylic acids and aromatic carboxylic acids do not have any odor and they are solids.
(c)
Interpretation:
Physical state at room temperature for hexanoic acid has to be given.
Concept Introduction:
Physical property of carboxylic acid is decided by the carbon chain and the functional group. Carboxylic acids are highly polar, as the carboxyl group is more polar. Due to this polar nature, the melting and boiling point are very high. Monocarboxylic acids that are unsubstituted which contains up to nine carbon atoms are present in liquid state. They have very sharp odor. Monocarboxylic acids that have more than ten carbon atoms in an unbranched fashion are waxy solids. They do not have any odor because of low volatility. Similar to this, dicarboxylic acids and aromatic carboxylic acids do not have any odor and they are solids.
(d)
Interpretation:
Physical state at room temperature for benzoic acid has to be given.
Concept Introduction:
Physical property of carboxylic acid is decided by the carbon chain and the functional group. Carboxylic acids are highly polar, as the carboxyl group is more polar. Due to this polar nature, the melting and boiling point are very high. Monocarboxylic acids that are unsubstituted which contains up to nine carbon atoms are present in liquid state. They have very sharp odor. Monocarboxylic acids that have more than ten carbon atoms in an unbranched fashion are waxy solids. They do not have any odor because of low volatility. Similar to this, dicarboxylic acids and aromatic carboxylic acids do not have any odor and they are solids.

Trending nowThis is a popular solution!

Chapter 5 Solutions
Organic And Biological Chemistry
- Would the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardThis organic molecule is dissolved in an acidic aqueous solution: OH OH A short time later sensitive infrared spectroscopy reveals the presence of a new C = O stretch absorption. That is, there must now be a new molecule present with at least one C = O bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. Videos 849 Explanation Check C Click and drag to start dwing a structure. # 3 MAR 23 Add/Remove steparrow_forward||| 7:47 ull 57% ← Problem 19 of 48 Submit Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the product of this carbocation rearrangement. Include all lone pairs and charges as appropriate. H 1,2-alkyl shift +arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hintarrow_forwardShow that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





