
(a)
Interpretation:
The IUPAC name of reaction products when methyl butanoate undergoes ester hydrolysis under acidic conditions has to be written.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as
(b)
Interpretation:
The IUPAC name of reaction products when methyl ethanoate undergoes ester hydrolysis under acidic conditions has to be written.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as carboxylic acid salt and alcohol.
(c)
Interpretation:
The IUPAC name of reaction products when isopropyl propanoate undergoes ester hydrolysis under acidic conditions has to be written.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as carboxylic acid salt and alcohol.
(d)
Interpretation:
The IUPAC name of reaction products when isopropyl ethanoate undergoes ester hydrolysis under acidic conditions has to be written.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as carboxylic acid salt and alcohol.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Organic And Biological Chemistry
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Explain why the following names of the structures are incorrect. CH2CH3 CH3-C=CH-CH2-CH3 a. 2-ethyl-2-pentene CH3 | CH3-CH-CH2-CH=CH2 b. 2-methyl-4-pentenearrow_forwardDraw the line-angle formula of cis-2,3-dichloro-2-pentene. Then, draw the line-angle formula of trans-2,3-dichloro-2-pentene below. Draw the dash-wedge formula of cis-1,3-dimethylcyclohexane. Then, draw the dash-wedge formula of trans-1,3-dimethylcyclohexane below.arrow_forwardRecord the amounts measured and calculate the percent yield for Part 2 in the table below. Dicyclopentadiene measured in volume Cyclopentadiene measured in grams 0 Measured Calculated Mol Yield Mass (g) or Volume (mL) Mass (g) or Volume (ml) 0.6 2.955 Part 2 Measurements and Results Record the amounts measured and calculate the percent yield for Part 2 in the table below. 0.588 0.0044 2.868 0.0434 N/A Table view List view Measured Calculated Mol $ Yield Melting Point (C) Mass (g) or Volume (ml) Mass (g) or Volume (ml.) Cyclopentadiene 0.1 0.08 0.001189 measured in volume Maleic Anhydride 0.196 N/A cis-norbornene-5,6-endo- dicarboxylic anhydride 0.041 0.0002467 N/A N/A N/A 0.002 N/A N/A 128arrow_forward
- Draw the condensed structural formula and line-angle formula for each: 2,3-dimethylheptane 3-bromo-2-pentanol 3-isopropyl-2-hexene 4-chlorobutanoic acidarrow_forwardRecord the IUPAC names for each of the structures shown below. a) b) c) OH d) OH e)arrow_forwardA solution of 14 g of a nonvolatile, nonelectrolyte compound in 0.10 kg of benzene boils at 81.7°C. If the BP of pure benzene is 80.2°C and the K, of benzene is 2.53°C/m, calculate the molar mass of the unknown compound. AT₁ = Km (14)arrow_forward
- Please help me answer the following questions. My answers weren't good enough. Need to know whyy the following chemicals were not used in this experiment related to the melting points and kf values. For lab notebook not a graded assignments.arrow_forwardDraw the arrow pushing reaction mechanism. DO NOT ANSWER IF YOU WONT DRAW IT. Do not use chat gpt.arrow_forwardComplete the following esterification reaction by drawing the structural formula of the product formed. HOH HO i catalyst catalyst OH HO (product has rum flavor) (product has orange flavor)arrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning





