
(a)
Interpretation: For the elements with given number of electrons the electronic configuration, its designation and the classification of the elements should be determined.
Concept Introduction:
Periodic Table: The available chemical elements are arranged considering their
In periodic table the horizontal rows are called periods and the vertical column are called group.
There are seven periods and 18 groups present in the table and some of those groups are given special name as follows,
Atomic Number: Atomic number of the element is equal to the number of protons present in the nucleus of the element which is denoted by symbol Z. The superscript presents on the left side of the
Electronic configuration: It is used to represent the distribution of electrons placed over orbitals that present in the atom.
The rules followed by the electrons are as follows,
The electrons gets distributed strictly following the order starting from lower energy orbital to higher energy orbital(Aufbau principle), pairing of electrons in subshell starts only when all the orbitals in the subshell are singly filled (Hund’s Rule) and finally, no two electrons that have same set of quantum numbers (Pauli’s Exclusion Principle).
(b)
Interpretation: For the elements with given number of electrons the electronic configuration, its designation and the classification of the elements should be determined.
Concept Introduction:
Periodic Table: The available chemical elements are arranged considering their atomic number, the electronic configuration and their properties. The elements placed on the left of the table are metals and non-metals are placed on right side of the table.
In periodic table the horizontal rows are called periods and the vertical column are called group.
There are seven periods and 18 groups present in the table and some of those groups are given special name as follows,
Atomic Number: Atomic number of the element is equal to the number of protons present in the nucleus of the element which is denoted by symbol Z. The superscript presents on the left side of the symbol of the element.
Electronic configuration: It is used to represent the distribution of electrons placed over orbitals that present in the atom.
The rules followed by the electrons are as follows,
The electrons gets distributed strictly following the order starting from lower energy orbital to higher energy orbital(Aufbau principle), pairing of electrons in subshell starts only when all the orbitals in the subshell are singly filled (Hund’s Rule) and finally, no two electrons that have same set of quantum numbers (Pauli’s Exclusion Principle).
(c)
Interpretation: For the elements with given number of electrons the electronic configuration, its designation and the classification of the elements should be determined.
Concept Introduction:
Periodic Table: The available chemical elements are arranged considering their atomic number, the electronic configuration and their properties. The elements placed on the left of the table are metals and non-metals are placed on right side of the table.
In periodic table the horizontal rows are called periods and the vertical column are called group.
There are seven periods and 18 groups present in the table and some of those groups are given special name as follows,
Atomic Number: Atomic number of the element is equal to the number of protons present in the nucleus of the element which is denoted by symbol Z. The superscript presents on the left side of the symbol of the element.
Electronic configuration: It is used to represent the distribution of electrons placed over orbitals that present in the atom.
The rules followed by the electrons are as follows,
The electrons gets distributed strictly following the order starting from lower energy orbital to higher energy orbital(Aufbau principle), pairing of electrons in subshell starts only when all the orbitals in the subshell are singly filled (Hund’s Rule) and finally, no two electrons that have same set of quantum numbers (Pauli’s Exclusion Principle).
(a)
Concept Introduction:
Periodic Table: The available chemical elements are arranged considering their atomic number, the electronic configuration and their properties.
The elements placed on the left of the table are metals which contain its last electron on s-orbital hence considered as s-block elements and the elements placed on the right side of the table contains its last electron in p-orbital which is regarded as p-block elements.
The s and p block elements together are called as main group elements.
The elements with its last electron in d-orbital are called d-block elements also called as
In periodic table the horizontal rows are called periods and the vertical column are called group.
(b)
Concept Introduction:
Periodic Table: The available chemical elements are arranged considering their atomic number, the electronic configuration and their properties.
The elements placed on the left of the table are metals which contain its last electron on s-orbital hence considered as s-block elements and the elements placed on the right side of the table contains its last electron in p-orbital which is regarded as p-block elements.
The s and p block elements together are called as main group elements.
The elements with its last electron in d-orbital are called d-block elements also called as transition elements and elements with its last electron in f-orbital are called as inner-transition elements which are usually placed at the bottom of the periodic table.
In periodic table the horizontal rows are called periods and the vertical column are called group.
(c)
Concept Introduction:
Periodic Table: The available chemical elements are arranged considering their atomic number, the electronic configuration and their properties.
The elements placed on the left of the table are metals which contain its last electron on s-orbital hence considered as s-block elements and the elements placed on the right side of the table contains its last electron in p-orbital which is regarded as p-block elements.
The s and p block elements together are called as main group elements.
The elements with its last electron in d-orbital are called d-block elements also called as transition elements and elements with its last electron in f-orbital are called as inner-transition elements which are usually placed at the bottom of the periodic table.
In periodic table the horizontal rows are called periods and the vertical column are called group.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Chemistry: Atoms First V1
- Draw the mechanism to make the alcohol 2-hexanol. Draw the Mechanism to make the alcohol 1-hexanol.arrow_forwardDraw the mechanism for the formation of diol by starting with 1-pentanal in... basic conditions then acidic conditions then draw the mechanism for the formation of a carboxylic acid from your product.arrow_forwardIdentify each chiral carbon as either R or S. Identify the overall carbohydrates as L or Darrow_forward
- Ethers can be formed via acid-catalyzed acetal formation. Draw the mechanism for the molecule below and ethanol.arrow_forwardHOCH, H HO CH-OH OH H OH 11 CH₂OH F II OH H H 0 + H OHarrow_forwardDraw the mechanism for the formation of diol by starting with one pen and all in... basic conditions then acidic conditions then draw the mechanism for the formation of a carboxylic acid from your product.arrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




