(a)
Interpretation: For the given
Concept Introduction:
- Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
- Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
- Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d.
- The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.
To write the ground-state electronic configuration of element with atomic number 10
(b)
Interpretation: For the given atomic number, the ground-state electronic configuration has to be written.
Concept Introduction:
- Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
- Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
- Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d
- The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.
To write the ground-state electronic configuration of element with atomic number 22
(c)
Interpretation: For the given atomic number, the ground-state electronic configuration has to be written.
Concept Introduction:
- Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
- Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
- Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d
- The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.
To write the electronic configuration of element with atomic number 28
(d)
Interpretation: For the given atomic number, the ground-state electronic configuration has to be written.
Concept Introduction:
- Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
- Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
- Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d
- The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.
To write the ground-state electronic configuration of element with atomic number 35
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Chemistry: Atoms First V1
- 2.84 Early attempts to arrange the elements often focused on atomic weight. Mendeleev considered a number of properties in addition to atomic weight, so he realized that some elements seemed out of place when ordered by atomic weight. Using the modern periodic table, identify elements for which Mendeleev must have had to switch the order in order to get the correct sequence of elements.arrow_forwardOne of the best indications of a useful theory is that it raises more questions for further experimentation than it originally answered. How does this apply to Dalton’s atomic theory? Give examples.arrow_forward2.26 In what region of the periodic table are you likely to find elements that form more than one stable ion?arrow_forward
- 2-102 An element consists of 90.51% of an isotope with a mass of 19.992 amu, 0.27% of an isotope with a mass of 20.994 amu, and 9.22% of an isotope with a mass of 21.990 amu. Calculate the average atomic mass and identify the element.arrow_forward2.40 What distinguished the work of Mendeleev that caused scientists to accept his concept of the periodic table when others before him were not believed?arrow_forwardWhat evidence led to the conclusion that cathode rays had a negative charge?arrow_forward
- How is the periodic Table arranged? (A) Horizontally ( B) Vertically (C) Atomic Mass. (D) Periods and Groupsarrow_forwardThe number and arrangement of electrons in an atom’s outer electron shell determine its element’s (a) atomic weight. (b) atomic number. (c) electrical properties. (d) chemical properties.arrow_forwardvi. Answer true or false. (a) Elements in the same column of the Periodic Table have the same outer-shell electron configuration. (b) All Group 1A elements have one electron in their valence shell. (c) All Group 6A elements have six electrons in their valence shell. (d) All Group 8A elements have eight electrons in their valence shell. (e) Period 1 of the Periodic Table has one element, period 2 has two elements, period 3 has three elements, and so forth. (1) Period 2 results from filling the 2s and 2p orbitals and, therefore, there are eight elements in period 2. (g) Period 3 results from filling the 3s, 3p, and 3d orbitals and, therefore, there are nine elements in period 3. (h) The main-group elements are s block and p block elements.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning