Concept explainers
(a)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(a)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (a) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(b)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(b)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (b) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(c)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(c)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (c) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(d)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(d)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (d) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(e)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(e)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (e) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(f)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(f)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (f) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(g)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(g)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (g) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
(h)
Interpretation: Ground-state electronic configuration of the given set of ions has to be written.
Concept Introduction:
- Electronic configuration is the arrangement of the electrons of atoms in the orbital. For atoms and ions the electronic configuration are written by using Pauli Exclusion Principle and Hund’s rule.
- According to Pauli Exclusion Principle, no two electrons having the same spin can occupy the same orbital.
- According to Hund’s rule, the orbital in the subshell is filled singly by one electron before the same orbital is doubly filled. When the orbitals is singly filled, all the electrons have same spin. In a doubly filled orbital, there are two electrons with opposite spin.
- Half-filled orbitals are comparatively stable as completely filled orbitals. Therefore, if there is a possibility of forming half-filled orbital then the electron will be moved to the respective orbitals giving rise to more stability.
- When ions are formed from the atoms the electrons are added or removed from the outermost orbital.
To write: Ground-state electronic configuration for the given ions,
(h)
Answer to Problem 4.69QP
Answer
The ground-state electronic configuration of (h) is
Explanation of Solution
Electronic configuration of
The electronic configuration of
Electronic configuration of
The electronic configuration of
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: Atoms First V1
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning