
(a)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To define valence electrons
(a)

Explanation of Solution
(b)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of Na
(b)

Explanation of Solution
Na has one valence electron and it belongs to group 1A
Hence the number of valence electron is equal to the group number is proved.
(c)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of Ca
(c)

Explanation of Solution
Na has 2 valence electrons and it belongs to group 2A
Hence the number of valence electron is equal to the group number is proved.
(d)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of lithium
(d)

Explanation of Solution
Na has 1 valence electrons and it belongs to group 1A
Hence the number of valence electron is equal to the group number is proved.
(e)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of iodine
(e)

Explanation of Solution
Iodine has 7 valence electrons and it belongs to group 7A
Hence the number of valence electron is equal to the group number is proved.
(f)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of nitrogen
(f)

Explanation of Solution
Nitrogen has 5 valence electrons and it belongs to group 5A
Hence the number of valence electron is equal to the group number is proved.
(g)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of selenium
(g)

Explanation of Solution
Se has 6 valence electrons and it belongs to group 6A
Hence the number of valence electron is equal to the group number is proved.
(h)
Interpretation: Valence electrons has to be defined and the electronic configuration for the given elements has to written to prove the number of valence electrons is equal to the group number
Concept Introduction: In the periodic table the elements are grouped based on their valence electrons. Valence electrons or outer shell electron of an atom is the total number of electrons that is present in the outer most shell of the orbital.
Electronic configuration is the distribution of electrons of atoms or molecule in the orbital. Pauli Exclusion Principle, Hund’s rule and Aufbau’s principle has to be followed to write the electronic configuration of an atom.
Pauli Exclusion Principle:
No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
Hund’s rule:
When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
Aufbau’s Principle:
Lowest energy level orbitals are filled first before occupying the higher energy level
The order in which the electrons should be filled is
1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d….
Electronic configuration of Si can be represented as [Ar]
Hence the number of valence electrons is equal to the group number.
To write electronic configuration and find the group of Si
(h)

Explanation of Solution
Hence the number of valence electron is equal to the group number is proved.
Valence electrons have defined, electronic configuration of the given elements has been written and the number of valence electron is equal to the group number has been proved.
Pair 1: (a)
Pair 2: (b)
Pair 3: (c)
(a)
To Know the reactivity of an element (a) with ‘
(a)

Explanation of Solution
(b)
To Know the reactivity of an element (b) with ‘
(b)

Explanation of Solution
(c)
To Know the reactivity of an element (c) with ‘
(c)

Explanation of Solution
(d)
To Know the reactivity of an element (d) with ‘
(d)

Explanation of Solution
(e)
To Know the reactivity of an element (e) with ‘
(e)

Explanation of Solution
(f)
To Know the reactivity of an element (f) with ‘
(f)

Explanation of Solution
(g)
To group the properties of the elements with given electron configuration
(g)

Explanation of Solution
Pair 1: (a)
Pair 2: (b)
Pair 3: (c)
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: Atoms First V1
- i need help with the followingarrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO(g) +Cl₂ (g) = 2NOC1 (g) AGº = -41. kJ Now suppose a reaction vessel is filled with 8.90 atm of chlorine (C12) and 5.71 atm of nitrosyl chloride (NOC1) at 1075. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. atm ☑ 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HCN is a weak acid. acids: 0.29 mol of NaOH is added to 1.0 L of a 1.2M HCN solution. bases: ☑ other: 0.09 mol of HCl is added to acids: 1.0 L of a solution that is bases: 0.3M in both HCN and KCN. other: 0,0,... ? 00. 18 Ar 日arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: 0.2 mol of KOH is added to 1.0 L of a 0.5 M HF solution. bases: Х other: ☐ acids: 0.10 mol of HI is added to 1.0 L of a solution that is 1.4M in both HF and NaF. bases: other: ☐ 0,0,... ด ? 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that NH3 is a weak base. acids: ☐ 1.8 mol of HCl is added to 1.0 L of a 1.0M NH3 bases: ☐ solution. other: ☐ 0.18 mol of HNO3 is added to 1.0 L of a solution that is 1.4M in both NH3 and NH₁Br. acids: bases: ☐ other: ☐ 0,0,... ? 000 18 Ar B 1arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. 2.2 mol of NaOH is added to 1.0 L of a 1.4M HF solution. acids: П bases: Х other: ☐ ப acids: 0.51 mol of KOH is added to 1.0 L of a solution that is bases: 1.3M in both HF and NaF. other: ☐ 00. 18 Ararrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2O4 (g) 2NO2 (g) AG⁰ = 5.4 kJ Now suppose a reaction vessel is filled with 1.68 atm of dinitrogen tetroxide (N204) at 148. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2O4 tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. yes no 0.42 atm ☑ 5 0/5 ? مله Ararrow_forwardHomework 13 (Ch17) Question 4 of 4 (1 point) | Question Attempt: 2 of 2 ✓ 1 ✓ 2 = 3 4 Time Remaining: 4:25:54 Using the thermodynamic information in the ALEKS Data tab, calculate the standard reaction free energy of the following chemical reaction: 2CH3OH (g)+302 (g) → 2CO2 (g) + 4H₂O (g) Round your answer to zero decimal places. ☐ kJ x10 ☐ Subm Check 2020 Hill LLC. All Rights Reserved. Terms of Use | Privacy Cearrow_forward
- Identifying the major species in weak acid or weak base equilibria Your answer is incorrect. • Row 2: Your answer is incorrect. • Row 3: Your answer is incorrect. • Row 6: Your answer is incorrect. 0/5 The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: HF 0.1 mol of NaOH is added to 1.0 L of a 0.7M HF solution. bases: 0.13 mol of HCl is added to 1.0 L of a solution that is 1.0M in both HF and KF. Exponent other: F acids: HF bases: F other: K 1 0,0,... ? 000 18 Ararrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. 0.035 atm ✓ G 00. 18 Ararrow_forwardHighlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area. HO- HO- -0 OH OH HO NG HO- HO- OH OH OH OH NG OHarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





