![Chemical Principles](https://www.bartleby.com/isbn_cover_images/9781305581982/9781305581982_largeCoverImage.gif)
Concept explainers
(a)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of aqueous ammonia and nitric acid are to be stated.
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between aqueous ammonia and nitric acid is shown below.
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between aqueous ammonia and nitric acid is shown below.
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(b)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of aqueous barium hydroxide and hydrochloric acid are to be stated.
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between barium hydroxide and hydrochloric acid is shown below.
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between barium hydroxide and hydrochloric acid is shown below.
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(c)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of perchloric acid and solid iron
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between perchloric acid and solid iron
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(d)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of solid silver hydroxide and hydrobromic acid are to be stated.
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between solid silver hydroxide and hydrobromic acid is shown below.
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between solid silver hydroxide and hydrobromic acid is shown below.
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation.
Therefore, the net ionic equation representing the formation of precipitate is shown below.
Want to see more full solutions like this?
Chapter 4 Solutions
Chemical Principles
- Draw the structure of the product of the reaction given the IR and MS data. Spectral analysis of the product reveals: MS: M 150, M-15, M-43 CH.COCI AICI, IR: 3150-3000 cm, 2950-2850 cm and 1700 cmarrow_forwardPart II. Identify whether the two protons in blue are homotopic, enantiopic, diasteriotopic, or heterotopic. a) HO b) Bri H HH c) d) H H H Br 0arrow_forwardNonearrow_forward
- Choose the option that is decreasing from biggest to smallest. Group of answer choices: 100 m, 10000 mm, 100 cm, 100000 um, 10000000 nm 10000000 nm, 100000 um, 100 cm, 10000 mm, 100 m 10000000 nm, 100000 um, 10000 mm, 100 cm, 100 m 100 m, 100 cm, 10000 mm, 100000 um, 10000000 nmarrow_forwardQ1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)