
Concept explainers
(a)
Interpretation: The three-dimensional shape and Lewis structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(b)
Interpretation: The three-dimensional structure and Lewis dot structure of should be determined.
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(c)
Interpretation: The three-dimensional shape and Lewis structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(d)
Interpretation: The three-dimensional shape and Lewis dot structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(e)
Interpretation: The three-dimensional shape and Lewis dot structure of should be determined
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(f)
Interpretation: The three-dimensional structure and Lewis dot structure of should be determined.
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(g)
Interpretation: The three-dimensional structure and Lewis dot structure of should be determined.
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.
(2)
Interpretation: The Lewis dot structure of titanium tetrachloride (TiCl4) molecule should be drawn and its geometry should be predicted.
Concept Introduction:
- VSEPR theory: This theory was developed to predict the shapes of covalent molecules in which atoms are joined together with single covalent bond. According to this theory
- The electron pairs around the central atom in a molecule tend to stay in space as far as possible so that repulsive forces between electron pairs are minimum
- The geometry or shape of the molecule is determined by the orientation of electron pairs.
- The shape of the molecule is regular if the electron pairs around the central atom are shared pairs only because they exert repulsive forces equally
- The shape are irregular if they have shared as well as lone pair around the central atom because they exert repulsive forces unequally.
- Lewis dot structure: The structure which shows the distribution valance electrons of all the atoms involved in bonding. This includes bonding electrons as well as lone pair of electrons.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
EBK CHEMISTRY FOR CHANGING TIMES
- Predict the major products of the following organic reaction: NC Δ ? Some important Notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to draw bonds carefully to show important geometric relationships between substituents. Note: if your answer contains a complicated ring structure, you must use one of the molecular fragment stamps (available in the menu at right) to enter the ring structure. You can add any substituents using the pencil tool in the usual way. Click and drag to start drawing a structure. Х аarrow_forwardPredict the major products of this organic reaction. Be sure you use dash and wedge bonds to show stereochemistry where it's important. + ☑ OH 1. TsCl, py .... 文 P 2. t-BuO K Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ( Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. Click and drag to start drawing a structure. Х : а ค 1arrow_forward
- In the drawing area below, draw the major products of this organic reaction: If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. 1. NaH 2. CH3Br ? Click and drag to start drawing a structure. No reaction. : ☐ Narrow_forward+ Predict the major product of the following reaction. : ☐ + ☑ ค OH H₂SO4 Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ... OH CI Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. ☐ No Reaction. Click and drag to start drawing a structure. : аarrow_forward
- Consider the following reactants: Br Would elimination take place at a significant rate between these reactants? Note for advanced students: by significant, we mean that the rate of elimination would be greater than the rate of competing substitution reactions. yes O no If you said elimination would take place, draw the major products in the upper drawing area. If you said elimination would take place, also draw the complete mechanism for one of the major products in the lower drawing area. If there is more than one major product, you may draw the mechanism that leads to any of them. Major Products:arrow_forwardDraw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction. OH + ! : ☐ + Х Click and drag to start drawing a structure.arrow_forwardFind one pertinent analytical procedure for each of following questions relating to food safety analysis. Question 1: The presence of lead, mercury and cadmium in canned tuna Question 2: Correct use of food labellingarrow_forward
- Formulate TWO key questions that are are specifically in relation to food safety. In addition to this, convert these questions into a requirement for chemical analysis.arrow_forwardWhat are the retrosynthesis and forward synthesis of these reactions?arrow_forwardWhich of the given reactions would form meso product? H₂O, H2SO4 III m CH3 CH₂ONa CH3OH || H₂O, H2SO4 CH3 1. LiAlH4, THF 2. H₂O CH3 IVarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





