Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 35P
To determine
The diagram showing wave function and probability distribution for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(i) We consider a one-dimensional potential barrier problem. In order for the particle to tunnel
through the potential barrier of the width L, the difference between the barrier height U and the
incident energy E of the particle with mass m has to be close. Using the transmission
probability given in the text book / lecture, obtain the energy difference U-E which gives the
transmission probability of exp(-2).
(ii) We consider an infinite square well potential with the width L. Obtain the energy E_{gr} of
the lowest energy level (ground state) of the particle with mass m, and show that E_{gr} scales
linearly with E-U in the problem (i). The potential structures of (i) and (ii) can be viewed as
"shadows" of each other.
Energy
U
---E-
Electron
X
L
L
(A) An electron is confined between two impenetrable walls 0.200 nm apart. Determine the energy levels for the states n = 1, 2, and 3.
3. Consider a particle of mass m in the potential
V = = Vo[8(x − a) — 8(x+a)].
Show that there is always a bound state for all nonvanishing a.
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Similar questions
- What would you NOT expect in the limits that the quantum well has infinite width, e.g. quantum confinement goes away? the lowest possible energy will be larger than zero O there will be no wave solution anymore (probability amplitude goes to zero) O energy separation would be zero; and rather than discrete energy levels there will be a continuous energy spectrum O the Correspondence principle will be fulfilledarrow_forwardA particle is trapped in an infinite one-dimensional well of width L. If the particle is in its ground state, evaluate the probability to find the particle (a) between x = x = L/3; (b) between x = L/3 and x = x = 2L/3 and x = L. O and 2L/3; (c) between %3Darrow_forwardAn electron is trapped in a one-dimensional infinite potential well in a state with quantum number n = 17. How many points of (a) zero probability and (b) maximum probability does its matter wave have?arrow_forward
- For an infinite potential well of length L, determine the difference in probability that a particle might be found between x = 0.25L and x = 0.75L between the n = 3 state and the n = 5 states.arrow_forwardCalculate the average position of the particle in a cube with length L for the ground and first excited states. Calculate the probability density for these states when x = y = L/2arrow_forwardCalculate the probability and probability density to find the particle between X = 0 and X = a /n when it is in the n statearrow_forward
- JC-33) Particle in a Well A particle is trapped in an infinite one-dimensional well of width L. If the particle is in its ground state, evaluate the probability to find the particle (a) between x = 0 and x = L/3; (b) between x = L/3 and x = 2L/3; (c) between x = 2L/3 and x = L. %3Darrow_forwardAn electron is trapped in a finite potential well that is deep enough to allow the electron to exist in a state with n= 4. How many points of (a) zero probability and (b) maximum probability does its matter wave have within the well?arrow_forwardCan the magnitude of a wave function (*(x,t)(x,t)) be a negative number? Explain.arrow_forward
- Suppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forwardThe wave function is evaluated at rectangular coordinates (x. y, z) = (2, 1, 1) in arbitrary units. What are the spherical coordinates of this position?arrow_forwardCheck Your Understanding Suppose that a particle with energy E is moving along the x-axis and is in the region O and L. One possible wave function is (x,t)={AeiEt/hsinxL, when 0xL otherwise Determine the normalization constant.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning