Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 16Q
To determine
The explanation for an increase in separation between energy states with an increase in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i) Consider the anomalous Zeeman pattern of D1 and D2 lines of sodium.
Calculate the frequency of the component of D₁ line corresponding to Am, = +1
where Am, = m - m (Double prime represent lower state).
I need the answer as soon as possible
3. Consider a particle of mass m in the potential
V = = Vo[8(x − a) — 8(x+a)].
Show that there is always a bound state for all nonvanishing a.
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 2 ( ) A microscopic spring-mass system has a mass m = 5 x 10-26 kg and the energy gap between the 2nd and 3rd excited states is 7 eV. >) Calculate in joules, the energy gap the 1st and 2nd excited states: E= bet b) (= What is the energy gap between the 4th and 7th excited states: E= ev c) (- -) To find the energy of the ground state, Wluation can be used ? (check the formula_sheet and select the number of the equation) d) (t) Which of the following substitutions can be used to calculate the energy of the ground state? 01/27 02 x 7 -) The energy of the ground state is: E= eV f) To find the stiffness of the spring, which equation can be used ? (check the formula_sheet and select the number of the equation) Which of the following substitutions can be used to calculate the stiffness of the spring? 6.582x10-16 5x10-26 O(5 x 10-26) 7 6.582x10-16 O(5 x 10-26) (6.582x10-16 7 6.582x30-16 5x10-26 O(5 x 10-26) (7)² O(5 x 10-26) (6.582 x 10-16) ² 02- 7 (6.582x10-16) 2 h). ) The stiffness…arrow_forward2) The energy levels of a quantum-mechanical, one-dimensional, anharmonic oscillator maybe approximated as 2 =(n * (n + )' En hw ;n = 0,1,2,... (++) = The parameter x, usually « 1, represents the degree of anharmonicity. Show that, to the first order in x and the fourth order in u (= ħw/kgT), the specific heat of a system of N such oscillators is given by C = Nk [(1-u² + *)+ 4x (: + *)]. 240 80 Note that the correction term here increases with temperature.arrow_forwardConsider a model thermodynamic assembly in which the allowed one-particle states have energies 0, ?, 2?, 3?, 4?,5?,6?,.... The assembly has three particles and a total energy of 7?. Identify the possible particle number distributions and calculate the average distribution of the three particles in the energy states when the particles are (a) localized and distinguishable (b) gaseous bosons (c) gaseous fermionsarrow_forward
- if the chlorine molecule at 290K were to rotate at the angular frequency predicted by the equipartition theorem what would be the average centipital force ? ( the atoms of Cl are 2 x 10-10 m apart and the mass of the chlorine atom 35.45 a.m.u )arrow_forwardA system of three identical distinguishable particles has energy 3ɛ. The single particle can take discrete energies 0, &, 2, 3ɛ and so on. The average number of particles in the energy state & is 1.2 0.9 0.6 0.3arrow_forward3. Please answer question throughly and detailed.arrow_forward
- Prove that the density of states is the same size and the wavelength range of a + da toa to be g(1)da : %3!arrow_forwardConsider a quantum mechanical ideal harmonic oscillator having a zero point energy of 1.4*10^-20J. how much energy could be released if the oscillator makes a transition from n=4 to n=2 states? a)0.69*10^19J b)2.88*10^-20J c)5.76*10^20J d)none are correctarrow_forwardAn electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on the quant numbers Nx and Ny, the allowed energies are given by E = H^2/8Me ( Nx^2/ Lx^2 + Ny^2/Ly^2) i) assuming Lx and Ly =L. Find the energies of the lowest for all energy levels of the electron ii) construct an energy level diagram for the electron and determine the energy difference between the second exited state and the ground state?arrow_forward
- 'arrow_forwardSuppose a system contain four identical particles and five energy levels given by the relationship, E;= i × 10-2º J, where i = 0,1,2 ,3,4. If the total energy of the system is Er= 6 E. Find the total number of the microscopic states for the distribution of these particles over the system energy levels keeping the given system conditions. Solution 4 identical particles Energy (10- Joule) Macroscopic state 4 Er= 6 € 3 Levels 1 E2 E (10-º J) k 1 2 4 5 6 7 N! Wk no! n!n2!n3!n4! Sk = kglnwkarrow_forwardSolid metals can be modeled as a set of uncoupled harmonic oscillators of the same frequency with energy levels given by En = ħwn n = 0, 1, 2,... where the zero-point energy (the lowest energy state) of each oscillator has been adjusted to zero for simplicity. In this model, the harmonic oscillators represent the motions of the metal atoms relative to one another. The frequency of these oscillators is low so that ħw = = 224 KB and the system vibrational partition function is given by 3N Z ² = la₁ - (1 1 e-0/T). (a) If the system contains one mole of atoms, find the average energy (in J) of this system at T= 172 K. (You can use = BkB.) T (b) What is the absolute entropy (in J/K) for this system? You can use either the Gibbs expression for S, or the system partition function to make this evaluation (they are equivalent, as your reading assignment indicates).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning