Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 59GP
(a)
To determine
The reason for the pencil must fall when it is balanced on its point.
(b)
To determine
The time taken by pencil to hit the table.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer as soon as possible
A harmonic oscillator consists of a 0.020 kg mass on a spring. The oscillation frequency is 1.50 Hz, and the mass has a speed of 0.480 m/s as it passes the equilibrium position. (a) What is the value of the quantum number n for its energy level? (b) What is the difference in energy between the levels En and En+1? Is this difference detectable?
An electron with kinetic energy E = 3.10 eV is incident on a barrier of width L = 0.230 nm and height U = 10.0 eV
(a)
What is the probability that the electron tunnels through the barrier? (Use 9.11 10-31 kg for the mass of an electron, 1.055 ✕ 10−34 J · s for ℏ, and note that there are 1.60 ✕ 10−19 J per eV.)
b)
What is the probability that the electron is reflected?
What If? For what value of U (in eV) would the probability of transmission be exactly 25.0% and 50.0%?
c) 25.0%
d) 50.0%
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Calculate the energy separations in units of joules and kilojoules per mole, respectively, between thelevels n = 2 and n = 1 of an electron in a one-dimensional box of length 1.0 nm. (b) Calculate the zero point energy of a harmonic oscillator consisting of a particle of mass 2.33 × 10−26 kgwith a force constant 155 N m−1.arrow_forward7arrow_forwardSuppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forward
- A quantum system described by a Hamiltonian Ĥ is in the state 1 |--1/10/17 - 15/1/2) + √√/53 (1 +21) 103) + √5101)]. |y) = N where on) are the eigenstates of energy such that Ĥ|¢n) = nEo|ón), Eo has units of energy, and NER. (c) What is the expectation value of the energy when the system is in the state |√)? Is it a possible measurement result if the energy is measured? = (d) Consider an operator Î, the action of which on |øn) (n = 1, 2, 3, 4) is defined by Xon) (n + 5)xo|on), where xo is a real-valued scalar. Suppose that a measurement of the energy of the above-defined |ý) yields 3Eº. Assume that immediately afterwards, we ideally measure the physical quantity correspond- ing to X. What is the value for the quantity obtained in the latter measurement?arrow_forwardRichard Feynman, in his book The Character of Physical Law, states: “A philosopher once said, ‘It is necessary for the very existence of science that the same conditions always produce the same results.’ Well, they don’t!” Who was speaking of classical physics, and who was speaking of quantum physics?arrow_forwardThe wave function for the simple harmonic oscillator is vo(x) = Coe normalization constant, Co. Find the [Hint: [° e-kx dx = 4 2hn А. 4 ma С. D. Vmw. OA. О в Oc. OD. B.arrow_forward
- Mark the correct alternative. (A) The uncertainty principle states that there is a limit to the physical measurements we can make and that limit continually changes with technological advances. (B) Distinct free particles can have the same wave function. (C) Any solution of the Schrodinger equation represents the scenario a possible physical scenario. (D) Two electrons can have the 4 same quantum numbers and that's where the maximum that in the world comes out quantum we can find two bodies in the same place and at the same time. (E) Every free electron must move at the speed of light.arrow_forward(a) Calculate the size of the quantum involved in the excitation of each of a molecular vibration of period10 fs. Express the results in units of joules and kilojoules per mole, respectively. (b) Calculate the minimum uncertainty in the speed of a ball of mass 500 g that is known to be within 1.0 um of a certain location on a bat.arrow_forwardA charge of 1000 Coulombs, formed solely by electrons with an energy of E = 15.0eV, impinges on a potential barrier with a height V, = 60eV and a width of 0.1 nm. Approximately how many electrons will be transmitted? (Note: use the reduced tunneling equation). 1:) 1 590 000 2:) 3 000 000 3:) 1590 4:) 3 x 1019 5:) 2 х 1019arrow_forward
- Consider a physical quantity q=2a+ 3b-4c, and a = 50 +2.5, b = 25 +3.1 and c = 80 +3.5 and a, b and c are random and independent, what is the value and absolute uncertainty of q?arrow_forwardSuppose the fractional efficiency of a cesium surface (with work function 1.80 eV) is 1.0 * 10-16; that is, on average one electron is ejected for every 1016 photons that reach the surface.What would be the current of electrons ejected from such a surface if it were illuminated with 600 nm light from a 2.00 mW laser and all the ejected electrons took part in the charge flow?arrow_forward2) The energy levels of a quantum-mechanical, one-dimensional, anharmonic oscillator maybe approximated as 2 =(n * (n + )' En hw ;n = 0,1,2,... (++) = The parameter x, usually « 1, represents the degree of anharmonicity. Show that, to the first order in x and the fourth order in u (= ħw/kgT), the specific heat of a system of N such oscillators is given by C = Nk [(1-u² + *)+ 4x (: + *)]. 240 80 Note that the correction term here increases with temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax