Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 33P
To determine
The change in wave function of a particle in the well.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) Calculate the energy of the emissive transition with the lowest energy possible for the Lyman series, for a mole of hydrogen atoms. Express your answer in joules/mol.
b) Is this transition in the visible spectral domain? If not, in which region is it located?
An atom, with atomic mass A = 22 is trapped in a harmonic oscillator with angular frequency 24.5 rad/s. If the atom is cooled into its quantum ground state, what is the spatial rms width Δx (in microns) of its Gaussian probability distribution? [Δx is similar to a classical standard deviation]
A proton is confined in box whose width is d = 750 nm. It is in the n=3 energy state. What is the probability that the proton will be found within a distance of d/n from one of the walls? [Hint: the average value sin^2x over one or more of its cycles is 1/2]
PLEASE PLEASE include a sketch of U(x) and Ψ(x)
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Similar questions
- The wave function for the simple harmonic oscillator is vo(x) = Coe normalization constant, Co. Find the [Hint: [° e-kx dx = 4 2hn А. 4 ma С. D. Vmw. OA. О в Oc. OD. B.arrow_forwardThe radial function of a particle in a central potential is give by wave [ - r R(r) = A-exp where A is the normalization constant and a is positive constant еxp а 2a of suitable dimensions. If ya is the most probable distance of the particle from the force center, the value of y isarrow_forwardWhat fraction (as a percentage) does the n=(2×9-1)th infinite potential well wavefunction contribute to the 'classical' initial wavefunction ψ(x,t=0)=1/L1/2 ? (Why are the even n excluded?)arrow_forward
- A particle of mass m is placed in a finite spherical well: - Vo. if r a. Find the ground state, by solving the radial equation with 1 = 0. Show that there is no bound state if Voa? < n²h²/8m.arrow_forwardA proton is confined in box whose width is d = 750 nm. It is in the n = 3 energy state. What is the probability that the proton will be found within a distance of d/n from one of the walls? [Hint: the average value sin2x over one or more of its cycles is 1/2.] Include a sketch of U(x) and ?(x).arrow_forward(b) (deBroglie wave length) Determine the deBroglie wavelength (formula: p=h/2) of a grain of dust with diameter 1um, density 1kg m-3 and speed 1cm s. Compare your result with the diameter of the dust grain and the diameter of an atom. Comment?arrow_forward
- The wave function of an electron confined in a one-dimensional infinite potential well of width L is $₁₂(x)=√ √ √ ²/1₁ sin( -), 2 NTX L where n is a positive integer. If the electron is in the n = 5 state: i) Calculate the probability of finding the electron between x = L and x = L. ii) Calculate the probability of finding the electron in an interval of width 0.04L located at = = }L. xarrow_forward1) In Quantum Mechanics, the Laplacian operator operates upon wave function w in cartesian coordinate is as the following; v’y = By using curvilinear coordinate scale factors, show that the Laplacian operator operation in spherical coordinate is as the following; a( sine 1 d'y ' sin' 0 og or sin 0 ararrow_forward2. The angular part of the wavefunction for an electron bound in a hydrogen atom is: Y(0,0) = C(5Y²³ +Y? +Yº° ), where Y₁™ (0,0) are normalized spherical harmonics. (a) What is the value of normalization constant C?arrow_forward
- The Einstein's model makes the assumption that a solid can be treated a set of N identical, independent harmonic oscillators. Compute the heat capacity for such a system. Make the simplifying assumption that a single harmonic oscillator is described by the quantized energy levels: E, = kħw, where k = 0,1, 2, ....arrow_forward[QUANTUM PHYSICS]arrow_forward(b) Look very carefully at the picture below. Give the relevant quantum numbers. Explain your answer. y-axisarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning