Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 11Q
To determine
Whether the temperature reading of the thermometer is the same as the temperature of the hot soup before the measurement was made.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Thermal emission from
forehead. Noncontact thermom-
eters
are used to
quickly measure the temperature
of a person, to monitor for fever
from an infection. They measure
the power of the radiation from a
surface, usually the forehead, in
the infrared range, which is just
outside the visible light range. Skin
has an emissivity & = 0.97. What is
the total power (infrared and vis-
ible) of the radiation per unit area
when the temperature is (a) 97.0°F
(a common early morning temper-
ature), (b) 99.0°F (a common late
afternoon temperature), and (c)
103°F (a temperature indicating
infection)?
ww
36.8
An infrared satellite measures outgoing radiation that leaves Earth's surface through an atmospheric window. The observed spectral irradiance at a wavelength of 10 μm is 2.199×107 W m-2 m-1. What is the temperature of the surface? Give your answer in K.
The emissivity of the human skin is 97.0
percent. Use 35.0 °C for the skin temperature
and approximate the human body by a
rectangular block with a height of 1.76 m, a
width of 43.5 cm and a length of 22.0 cm.
Calculate the power emitted by the human
body.
2301 J
units. No
What is the wavelength of the peak in the
spectral distribution for this temperature?
Fortunately our environment radiates too. The
human body absorbs this radiation with an
absorbance of 97.0 percent, so we don't lose
our internal energy so quickly. How much
power do we absorb when we are in a room
where the temperature is 23.0 °C?
How much energy does our body lose in one
second?
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At what wavelength is the radiation emitted by the human body at its maximum? Assume a temperature of 37°C.arrow_forwardPlease asaparrow_forwardThe emissivity of the human skin is 97.0 percent. Use 35.0 °C for the skin temperature and approximate the human body by a rectangular block with a height of 1.61 m, a width of 37.5 cm and a length of 22.0 cm. Calculate the power emitted by the human body. What is the wavelength of the peak in the spectral distribution for this temperature? Fortunately our environment radiates too. The human body absorbs this radiation with an absorptance of 97.0 percent, so we don't lose our internal energy so quickly. How much power do we absorb when we are in a room where the temperature is 23.5 °C? How much energy does our body lose in one second?arrow_forward
- A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance traveled and an uncertainty of 1 s in the elapsed time. (a) Calculate the percent uncertainty in the distance. (b) Calculate the uncertainty in the elapsed time. (c) What is the average speed in meters per second? (d) What is the uncertainty in the average speed?arrow_forwardProblem-1: An asteroid is hurtling toward earth at 150,000“. The temperature of the asteroid is about 100 K, meaning that its peak emission is 2 = 29 µm. The speed of light is c = 3E[8]. a) What is the wavelength of light that we receive from the asteroid? (Answer: 2.89855E[-05] m)arrow_forwardA blackbody (a hollow sphere whose inside is black) emits radiation when it is heated. The emittance (Mλ, W/m3), which is the power per unit area per wavelength, at a given temperature (T, K) and wavelength (λ, m) is given by the Planck distribution, where h is Planck's constant, c is the speed of light, and k is Boltzmann's constant. Determine the temperature in degrees Celsius at which a blackbody will emit light of wavelength 3.57 μm with an Mλ of 5.31×1010 W/m3. The power per unit area emitted can be determined by integrating Mλ between two wavelengths, λ1 and λ2. However, for narrow wavelength ranges (Δλ), the power emitted can be simply calculated as the product of Mλ and Δλ. power emitted=MλΔλ Using the conditions from the first part of the question, determine the power emitted per square meter (W/m2) between the wavelengths 3.56 μm and 3.58 μm.arrow_forward
- 2. The function C = ² (F – 32) is used to convert a Fahrenheit temperature into Celsius temperature where the number of degrees in Celsius C, is a function of the number of degrees in Fahrenheit, F. (a) Is this a linear function (yes or no)? (b) Find C(0) (c) Find C(32) (d) Find the temperature in Celsius when the temperature in Fahrenheit is - 40 degrees. (e) Find the temperature in Fahrenheit when the temperature in Celsius is 30 degrees.arrow_forwardThe wavelength of maximum intensity of the sun’s radiation is observed to be near 500 nm. Assume the sun to be a blackbody and calculate (a) the sun’s surface temperature, (b) the power per unit area R(T) emitted from the sun’s surface, and (c) the energy received by the Earth each day from the sun’s radiation.arrow_forwardA bag of frozen vegetables with temperature 32◦F is placed in a 75◦F room. After 20 minutes, the temperature of the vegetables has risen to 41◦F. Using this information, find an exponential formula for the temperature of the vegetables where time is measured in minutes. To find the exponential formula, transform the temperature into a new variable for which the problem can be solved as an exponential growth/decay problem. Then find the formula in that variable and transform back to temperature. Based on the formula, what is the temperature of the vegetables after 45 minutes?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning