Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 49GP
To determine
The distance between the interference peaks on the screen.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A single beam of electrons shines on a single slit of width 3.3nm. A diffraction pattern (of electrons!) is formed on a screen that is 2.1m away from the slit. The distance between the central bright spot and the first minimum is 2.1cm.What is the speed (m/s) of the electrons?Make use of the small angle approximation.
A single beam of electrons shines on a single slit of width 9.5nm. A diffraction pattern (of electrons!) is formed on a screen that is 7.6m away from the slit. The distance between the central bright spot and the first minimum is 1.9cm.What is the wavelength (nm) of the electrons?Make use of the small angle approximation
A single beam of electrons shines on a single slit of width 8.7nm. A diffraction pattern (of electrons!) is formed on a screen that is 3.9m away from the slit. The distance between the central bright spot and the first minimum is 5.7cm.What is the kinetic energy (keV, i.e. kilo electron-Volts) of the electrons?Make use of the small angle approximation.
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Similar questions
- The spacing between crystalline planes in the NaC1 crystal is 0.281 nm, as determined by X-ray diffraction with X-rays of wavelength 0.170 nm. What is the energy of neutrons in the neutron beam that produces diffraction peaks at the same locations as the peaks obtained with the X-rays?arrow_forwardIn a beam of white light (wavelengths from 400 to 750 nm), what range of momentum can the photons have?arrow_forwardA single slit receives light with wavelength 534 nm. The full central maximum on a screen behind the slit draws view from -90° to +90°. The light is now replaced by a beam of electrons, each of which has a kinetic energy ehb of 320 eV. at what angle will the first minimum of the diffraction pattern occur?arrow_forward
- An electron microscope produces electrons with a 2.00-pm wavelength. If these are passed through a 1.00-nm single slit, at what angle will the first diffraction minimum be found?arrow_forwardA beam of electrons moving at a uniform speed of 1617 m/s passes through a pair of vertical thin slits that are 2.1 x 105 m apart directed toward a screen 1.4 m away. At what horizontal distance away from the centerline does the first bright region of electrons appear on the screen? 0.030 m 0.021 m 0.019 mm 0.013 mm 0.042 marrow_forwardA stream of protons, each with a speed of 0.9900c, are directed into a two-slit experiment where the slit separation is 4.00* 10^9 m. A two-slit interference pattern is built up on the viewing screen.What is the angle between the center of the pattern and the second minimum (to either side of the center)?arrow_forward
- What double-slit separation would produce a first-order maximum at 3.00º for 25.0-keV x rays? The small answer indicates that the wave character of x rays is best determined by having them interact with very small objects such as atoms and molecules.arrow_forwardAn electron microscope produces electrons with a 2.10 pm wavelength. If these are passed through a 1.45 nm single slit, at what angle will the first diffraction minimum be found?arrow_forward1. Two very small slits are positioned a distance of 4.15 nm from each other. A relativistic stream of protons is directed at these slits. (a) If these protons have a relativistic kinetic energy that is equal to eight times their rest energy, then what is the distance a screen must be placed in front of the slits in order for the distance between the central maximum and the m = 11 minimum of the interference pattern to be 1.00 cm? (b) By what factor is the energy of photons that create this same interference pattern greater than the relativistic kinetic energy of the neutron?arrow_forward
- Electrons go through a single slit 150 nm wide and strike a screen 24.0 cm away. You find that at angles of +/- 20.0 degrees from the center of the diffraction pattern, no electrons hit the screen but electrons hit at all points closer to the center. (a) How fast were these electrons moving when they went through the slit? (b) What will be the next larger angles at which no electrons hit the screen?arrow_forwardWhat double-slit separation would produce a first-order maximum at 3.00° for 25.0-keV x rays? The small answer indicates that the wave character of x rays is best determined by having them interact with very smallobjects such as atoms and molecules.arrow_forwardWhen a beam of electrons is directed at a suitably narrow pair of slits, a)one bright region with intensity decreasing exponentially on each side is observed at a screen behind the double slit. b)alternating areas of bright intensity and low intensity are observed behind the double slit. c)all the electrons pass through one slit and a single, sharply defined region of bright intensity is observed. b)two areas of bright, sharply defined intensity are observed, one behind each slit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning