Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 31P
(a)
To determine
The ground state energy of a single oxygen molecule.
(b)
To determine
The quantum number.
(c)
To determine
The difference between nth state and next higher state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a)
Emission of microwave radiation from the J = 1→0 transition of a
molecule has been detected at 88.63 GHz from a region of interstellar
space in which there is evidence of thermal equilibrium and a temperature
of around 20 K. Estimate the frequency and relative intensity of the
J = 2 → 1 transition of the same molecule.
(A) An electron is confined between two impenetrable walls 0.200 nm apart. Determine the energy levels for the states n = 1, 2, and 3.
You have the energy matrix for only 4x4 elements. Calculate the expected value of energy (E) using the function 1 1 -fox /2 e -3icut 2 [e heo S 0 0 0 2 E= = 5 0 0 e 0 2 0 0 0 Ther 2 J Al Laxities (E) A8l 2 gidd) dasll Cuaal l o |2 l Jiew /2 Vi *[fi“ e 0:‘ 5
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Similar questions
- if the chlorine molecule at 290K were to rotate at the angular frequency predicted by the equipartition theorem what would be the average centipital force ? ( the atoms of Cl are 2 x 10-10 m apart and the mass of the chlorine atom 35.45 a.m.u )arrow_forwardi) Consider the anomalous Zeeman pattern of D1 and D2 lines of sodium. Calculate the frequency of the component of D₁ line corresponding to Am, = +1 where Am, = m - m (Double prime represent lower state).arrow_forward(a) The Lyman series in hydrogen is the transition from energy levels n = 2, 3, 4, ... to the ground state n = 1. The energy levels are given by 13.60 eV En n- (i) What is the second longest wavelength in nm of the Lyman series? (ii) What is the series limit of the Lyman series? [1 eV = 1.602 x 1019 J, h = 6.626 × 10-34 J.s, c = 3 × 10° m.s] %3D Two emission lines have wavelengts A and + A2, respectively, where AA <<2. Show that the angular separation A0 in a grating spectrometer is given aproximately by (b) A0 = V(d/m)-2 where d is the grating constant and m is the order at which the lines are observed.arrow_forward
- (4) Electronic energy level of a hydrogen atom is given by R ; п %3D 1,2, 3,... n2 E = - and R = 13.6 eV. Each energy level has degeneracy 2n2 (degeneracy is the number of equivalent configurations associated with the energy level). (a) Derive the partition function for a hydrogen atom at a constant temperature. (b) Consider that the energy level of a hydrogen atom is approximated by a two level system, n = 1,2. Estimate the mean energy at 300 K.arrow_forward(4) Electronic energy level of a hydrogen atom is given by R E ; n = n2 1, 2, 3,... and R = 13.6 eV. Each energy level has degeneracy 2n² (degeneracy is the number of equivalent configurations associated with the energy level). (a) Calculate the partition function Z for a hydrogen atom at a constant temperature. (b) Let us consider that the energy level of a hydrogen atom is approximated by a two level system, n = 1,2. Estimate the mean energy at 300 K.arrow_forward(a) A quantum dot can be modelled as an electron trapped in a cubic three-dimensional infinite square well. Calculate the wavelength of the electromagnetic radiation emitted when an electron makes a transition from the third lowest energy level, E3, to the lowest energy level, E₁, in such a well. Take the sides of the cubic box to be of length L = 3.2 x 10-8 m and the electron mass to be me = 9.11 x 10-³¹ kg. for each of the E₁ and E3 energy (b) Specify the degree of degeneracy levels, explaining your reasoning.arrow_forward
- (i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in theactual number with the unit of [eV]. We consider a transition that electron in the 3p state emitsa photon and make a transition to the 2s state. What is the frequency ν of this photon ?(ii) Now we do not include electron spin angular momentum, and just estimate an effect of amagnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum.How many lines of optical transition do we expect ? What is the interval of the frequency in thefield B = 0.1 Tesla ?(iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the3s state, Explain the reason.(iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but afree electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman)levels. Obtain the level difference in the unit of [eV] from the value of magnetic…arrow_forwardAn atom, with atomic mass A = 22 is trapped in a harmonic oscillator with angular frequency 24.5 rad/s. If the atom is cooled into its quantum ground state, what is the spatial rms width Δx (in microns) of its Gaussian probability distribution? [Δx is similar to a classical standard deviation]arrow_forwarda) Calculate the energy of the emissive transition with the lowest energy possible for the Lyman series, for a mole of hydrogen atoms. Express your answer in joules/mol. b) Is this transition in the visible spectral domain? If not, in which region is it located?arrow_forward
- The energy spectrum of a particle consists of four states with energies 0,e, 2 e,3 e. Let Z, (T),Z, (T) and Ze(") denote the canonical partition functions for four non- interacting particles at temperature T. The subscripts B, F and C corresponds to bosons, fermions and distinguishable classical particles, respectively. Let y= exp k„T Which one of the following statements is true about ZB (T), ZF (T) and Zc (T)? (a) They are polynomials in y of degree 12,6 and 12, respectively. (b) They are polynomials in y of degree 16,10 and16, respectively (c) They are polynomials in y of degree 9,6 and 12, respectively. (d) They are polynomials in y of degree 12,10 and 16, respectively.arrow_forwardAssume that the nucleus of an atom can be regarded as a three-dimensional box of width 2:10-¹4 m. If a proton moves as a particle in this box, find (a) the ground-state energy of proton in MeV and (b) the energies of the first excited state. (c) What are the degenerates of these states? Constants: h = 6.626-10-34 [J-s], m = 1.673-10-27 [kg] and ħ=h/2π.arrow_forward4-21. Consider a lattice of M equivalent noninteracting magnetic dipoles, u (associated, say, with electron or nuclear spins). When placed in a magnetic field H, each dipole can orient itself either in the same direction, ↑, or opposed to, t, the field. The energy of a dipole is -µH if oriented with the field, and +µH if oriented against the field. Let N be the number of ! states and M – N the number of ↑ states. For a given value of N, the total energy is µHN – µH(M – N)=(2N – M)µH The total magnetic moment I is I=(M -- 2N)µ where Nis the average value of N for a given M, H, and T. The work necessary to increase H by dH is -IdH. Find the specific heat C and the total magnetic moment for this systemarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning