Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38.8, Problem 1CE
To determine
The Probability of finding the electron between
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The number of silicon atoms per m3 is 5 × 1028. This is doped simultaneously with 5 × 1022 atoms per m3 of Arsenic and 5 × 1020 per m3 atoms of Indium. Calculate the number of electrons and holes.
Given that nI = 1.5 × 1016m–3. Is the material n-type or p-type?
The Lennard-Jones potential, (E = 48[-(0/r)6+ (o/r)¹2]), is a good approximation that
describes realistic potential energy of 2 atoms, where o is collision distance and ris
the distance between two atoms. Explain the physical meaning when (1) r = o and
(ii) ro=1.1220.
The number of silicon atoms per m3 is 5 × 1028. This is doped simultaneously with 5 × 1022 atoms per m3 of Arsenic and 5 × 1020 per m3 atoms of Indium. Calculate the number of electrons and holes.
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- please asaparrow_forwardIf the radius of a calcium ion is 0.22 nm, how much energy does it take to singly ionize it? Give your answer in electron-volts (eV) with precision 0.1 eV. Give your answer to 2 significant digits.arrow_forwardd) Show that the resistivity canbe expressed (via the familiar notation) as, m p= net here m is the electronmass; † is the period of time that elapses between two subsequent collisions, the electron undergoes with copper nuclei throughout its chaotic motion in the body of copper (supposing that the current carrying cable is made of copper). Hint: Write F=eE, i.e. the electric force reigning on the electron. Write also the acceleration a=F/m, an electron is subject to, based on the Newton's law ofmotion.arrow_forward
- A. If the position of a chlorine ion in a membrane is measured to an accuracy of 1.50 µm, what is its minimum uncertainty in velocity (in m/s), given its mass is 5.86 10-26 kg? B. If the ion has this velocity, what is its kinetic energy in eV? (Compare this with typical molecular binding energies of about 5 eV.)arrow_forwardThe expression for the Fermi energy of electrons in a stellar interior is εF =ℏ2 /2me [3pi 2 Z/A ρ/mp ] 2/3 (See image) Derive the condition on the temperature and density for the electrons in the stellar interior to bedegenerate. Briefly explain the reason for this limit. Demonstrate that the condition for degeneracy you have found corresponds to a straight line ina plot of log T versus log ρ. Use the condition you have found to calculate whether the centre of the white dwarf Sirius B isdegenerate. Use values of ρc = 3.0 × 109 kg m−3, Tc = 7.6 × 107 K, and Z/A = 0.5.arrow_forwardSort: Consider 1.50 mols of a substance in thermal equilibrium at a temperature of 87.0 °C whose atoms can occupy only two energy levels separated by 5.00x102 eV, where 1 eV (electron volt) is an energy unit equal to 1.60x1019 J. kB = 1.38x10 23 J/K , NA = 6.02x1023 mol! %3D Eg - a) Find the probability of occupation of the ground state with energy E1 and the 1st excited state with energy E2? b) How many atoms in the substance (on average) are in 5.00x102 eV the ground state and in the 1st excited state? E 回向arrow_forward
- One description of the potential energy of a diatomic molecule is given by the Lennard–Jones potential, U = (A)/(r12) - (B)/(r6)where A and B are constants and r is the separation distance between the atoms. For the H2 molecule, take A = 0.124 x 10-120 eV ⋅ m12 and B = 1.488 x 10-60 eV ⋅ m6. Find (a) the separation distance r0 at which the energy of the molecule is a minimum and (b) the energy E required to break up theH2 molecule.arrow_forwardWe have a piece of Si (shown below) with dimensions 50 um x 200 um x 0.25 um. The Silicon is doped uniformly with ND = 1014 cm3. What is the resistance of the slab when measured along the length (200 um)? %3| If a light with photonic energy greater than the bandgap of Si were to be shone from the top surface such that it produces uniform hole-electron pairs Ap =An = 5E12 cm-3 throughout the slab, what would be the ratio of the illuminated conductivity vs the dark conductivity? What is the ratio of conductivity due to holes vs the conductivity due to electrons under illumination? How about in the dark? 200 Nmarrow_forwarda) Starting from a general fornula of desity of States. g(k) dk= Vkdk 272 Show that g(w) dw= 3x Vw°dw for Phonons under the assumption thait the phonoh dre aicoustic, meaning U = does not depend 3. on W or k. 3N b) In a solid of N atoms, there are vibrational modes(phonons) with the highat frequercy Wp.arrow_forward
- 1 (a) The width of an infinite potential well for a free electron of an 1-D material is 10.5 A°. Determine the first four allowed energy levels in eV for this free electron. Also find E2-E1, E3-E2 and E4-E3 in eV. Comment on the separation between successive levels. n²n²h? En %3D 2mа? (b) Suppose for Fermi-Dirac probability distribution function, E-EF = 0.15 eV. Find the temperature at which (i) the ff(E) = 0.05 and (ii) the ff(E) = 0.095. Why at higher temperature, the probability of occupancy of a state E > EF is higher? %3D 1 fr (E) = E-EF 1+e kTarrow_forwardKl is a salt with lattice constant of a = 0.716 nm. Suppose one measures the powder diffraction from a cubic crystal of Kl using Cu Ka X-radiation having wavelength of 2 = 0.154 nm. The positions of the first nine reflections to occur at 20 are as the following. Assume n=1 intensity 20 a) Fill Table#1 and do peak assignment. i.e find (hkl) 20 0 d, = na/2 sin0 h² + k² + 1² = a²ldu (hkl) 21.8° 25.200 36.000 42.50 44.50 51.750 56.8° 58.450 64.65° b) From the allowed (hkl) planes that you have obtained, identify the expected crystal structure?arrow_forwardb) If the effective mass of electron is 0.4m0 having momentum 2.416×10−16 ????.?????then calculate energy of free electron in “electron volt” at the bottom of conduction bandarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON