Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 7Q
To determine
Whether the statement "the ground-state energy in the hydrogen atom can be precisely known but that the excited states have some uncertainties in their values" remains consistent with the uncertainty principle kept in its energy form.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It has been said that the ground-state energy in the hydrogenatom can be precisely known but the excited states havesome uncertainty in their values (an “energy width”). Is thisconsistent with the uncertainty principle in its energy form?Explain
When you solve Schrodinger equation for your system you'll finally get well defined
energy levels with no uncertainty related to them. Isn't it a contradiction to universal uncertainty
principle? How do you explain this ( use appropriate equations)?
Clearly explain why the quantum oscillator is a good model for representing molecular vibrations.
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Is it possible to measure energy of 0.75h for a quantum harmonic oscillator? Why? Why not? Explain.arrow_forwardWhen a quantum harmonic oscillator makes a transition from the (n+1) state to the n state and emits a 450-nm photon, what is its frequency?arrow_forwardCan the magnitude of a wave function (*(x,t)(x,t)) be a negative number? Explain.arrow_forward
- Consider hydrogen in the ground state, 100 . (a) Use the derivative to determine the radial position for which the probability density, P(r), is a maximum. (b) Use the integral concept to determine the average radial position. (This is called the expectation value of the electrons radial position.) Express your answers into terms of the Bohr radius, a0. Hint: The expectation value is the just average value, (c) Why are these values different?arrow_forward6. An electron in hydrogen atom is in initial state Þ(r, 0) = A(2410o + iÞ210 + 421–1 – 2ib211) where wnim are the eigenfunctions of the hydrogen atom a. Determine the constant A b. What is the probability of finding the electron in the first excited state? hw = - n2 c. Write the state Þ(r, t) at time t, using energy eigenvalues as En d. Find the expectation value of L in the state Þ(r,t e. Find the expectation values of Lx and Ly in the state (r, t f. If measurement of Lz led to the value –ħ what will be results of measurement of energy and the square of total orbital momentum immediately afterwards and what are their probabilities?arrow_forward3. a) According to the spherical shell model, predict J" for the ground state and first excitation of 'Be, ¹70 and 2¹Ne. b) Explain pros and cons of the shell model based on a harmonic oscillator potential of the type: Vo = 1/2 kr².arrow_forward
- 3. a) Show that for values of n » 1, the fractional difference in energy between states n and n + 1 for a particle in an infinite potential well is approximately given by En+1 – En En b) What is the percentage difference between states n = 1000 and n = 1001? c) Discuss how this result is related to the Bohr correspondence principle.arrow_forwardPlease Solve the problem question quantum physics.... With the step, thank uarrow_forwardDoes the uncertainty principle set a limit to how well youcan make any single measurement of position? Explain.arrow_forward
- What is the total mechanical energy for a ground- state electron in H, He*, and Li++ atoms? For which atom is the electron most strongly bound? Why?arrow_forward1) An electron is confined to a square box of length L, and the walls of that box are infinitely high. The zero-point energy (ZPE) is defined as the minimal energy that corresponds to the smallest quantum number n. What would be the length of the box L such that the ZPE of the electron located inside this box is equal to its rest mass energy mec2?arrow_forwardThe lifetimes of the levels in a hydrogen atom are of the order of 10-8 s. Find the energy uncertainty of the first excited state and compare it with the energy of the state. 3 p ROarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning