Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 21P
To determine
The minimum speed of an electron trapped in an infinitely deep square well.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(I) A proton is traveling with a speed of
(8.660 ± 0.012) × 10° m/s. With what maximum precision
can its position be ascertained? [Hint: Ap = m Av.]
(i) Compare stimulated and spontaneous emission.
What is the significance of Einstein's coefficients?
(ii) Calculate the frequency difference between
resonant longitudinal 20th mode and 21th mode, if the
cavity length is 20 cm.
1 1+i
= ,
%3D
Example 23. Suppose a spin ½ particle is in the state l0)
2
What are probabilities of getting +, and
if
2
2
(1) z component of spin is measured?
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Similar questions
- (i) Obtain the expression for eigenfunctions of a particle trapped in one 1D Infinite potential well of length, L. (ii) Calculate the wavelength of photons emitted when an electron is confined in a 0.1 nm wide infinite potential well that makes a transition from the second excited state to the first excited state.arrow_forward7) A particular laser oscillating at the resonant wavelength of 1 um has a M value of 1010. The photon number in the cavity at the threshold pumping rate is (Write the Answer as an integral number without using exponents)arrow_forwardGive an explanation why the measurement of energy for many-electron atoms is not accurately calculated using mathematical analytical methods, variation methods and perturbation methods !arrow_forward
- The average lifetime of a Z boson is about 3.0 x 10 J Need Help? Read It -25 s. Estimate the minimum uncertainty in the energy of a Z boson.arrow_forward(1) For the helium-neon laser, estimate the Doppler broadening of the output wavelength 632.8 nm at T= 293 K. (2) Estimate the broadening of the same wavelength due to the Heisenberg uncertainty principle, assuming that the metastable state has a lifetime of about 1 ms.arrow_forward(c) A proton confined in a one dimensional box emits a 2.0 MeV gamma-ray photon in a quantum jump from n = 2 to n = 1. What is the length of the box? The mass of a proton is 1.67 x 1027 kg.arrow_forward
- (a) Show that the spread of velocities caused by the uncertainty principle does not have measurable consequences for macroscopic objects (objects that are large compared with atoms) by considering a 100-g racquetball confined to a room 15 m on a side. Assume the ball is moving at 2.0 m/s along the x axis.arrow_forwardSuppose an electron confined to a emits photons. The longest wavelength that is registered is 500.0 nm. What is the width of the box?arrow_forwardCheck Your Understanding A sodium atom nukes a transition from the first excited state the wound state, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state is 16108s, what is the uncertainty in energy of this state? What is width of the corresponding line?arrow_forward
- Is it possible to measure energy of 0.75h for a quantum harmonic oscillator? Why? Why not? Explain.arrow_forwardDo the Balmer series and the Lyman series overlap? Why? Why not? (Hint: calculate the shortest Balmer line and the longest Lyman line.)arrow_forwardThe energy of the four non-interacting identical fermions and bosons in one dimensiona! box of size a is, 5h? 4h? (a) ma² ' 2ma? 5h? 2h? (b) ma ' ma 10h? 3h? (c) 2ma' 2ma? 2h? 4h? (d) ma² ' 2ma?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax