Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
bartleby

Concept explainers

Question
Book Icon
Chapter 38, Problem 39P
To determine

The energy of electron.

Blurred answer
Students have asked these similar questions
(i) We consider a one-dimensional potential barrier problem. In order for the particle to tunnel through the potential barrier of the width L, the difference between the barrier height U and the incident energy E of the particle with mass m has to be close. Using the transmission probability given in the text book / lecture, obtain the energy difference U-E which gives the transmission probability of exp(-2). (ii) We consider an infinite square well potential with the width L. Obtain the energy E_{gr} of the lowest energy level (ground state) of the particle with mass m, and show that E_{gr} scales linearly with E-U in the problem (i). The potential structures of (i) and (ii) can be viewed as "shadows" of each other. Energy U ---E« Electron X L L (iii) We now consider a 3-dimensional infinite square well potential having the length of the x, y, and z directions to be all L. V=L**3 is the volume of the cube of this potential. We consider energy level of a single particle (boson)…
(i) We consider a one-dimensional potential barrier problem. In order for the particle to tunnel through the potential barrier of the width L, the difference between the barrier height U and the incident energy E of the particle with mass m has to be close. Using the transmission probability given in the text book / lecture, obtain the energy difference U-E which gives the transmission probability of exp(-2). (ii) We consider an infinite square well potential with the width L. Obtain the energy E_{gr} of the lowest energy level (ground state) of the particle with mass m, and show that E_{gr} scales linearly with E-U in the problem (i). The potential structures of (i) and (ii) can be viewed as "shadows" of each other. Energy U ---E- Electron X L L
7) A particular laser oscillating at the resonant wavelength of 1 um has a M value of 1010. The photon number in the cavity at the threshold pumping rate is (Write the Answer as an integral number without using exponents)

Chapter 38 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning