Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 19P
(a)
To determine
The wave function of a free electron.
(b)
To determine
The wave function of a free proton.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(2nx
sin
\1.50.
2nz
Consider the case of a 3-dimensional particle-in-a-box. Given: 4 =
sin(ny) sin
2.00.
What is the energy of the system?
O 6h?/8m
O 4h²/8m
O 3h2/8m
O none are correct
An
electron can be assumed to be uniformly charged sphere
a total charge e and radius Ro.
having
(a) Calculate the electrostatic energy of the electron.
6) If this energy is equal to the rest energy mo c² of the
electron, what must be its radius?
Consider a system of N free electrons within a volume V. Even at absolute zero, such a system exerts a
pressure P on its surroundings due to the motion of the electrons. To calculate this pressure, imagine that the
volume increases by a small amount dV. The electrons will do an amount of work PdV on their surroundings,
which means that the total energy Erot of the electrons will change by an amount dEtot = -PdV. Hence
P = -dErot/dV.
a) Show that the pressure of the electrons at absolute zero is
2 N
P ==EFo,
where Ero denotes the Fermi energy at absolute zero.
b) Calculate Efo and P for solid copper, which has a free-electron concentration of 8.45 x 1028 m-3. Express
Ero and P in electronvolts and atmospheres, respectively.
c) The pressure you found in part (b) is extremely high. Why, then, don't the electrons in a piece of copper
simply explode out of the metal?
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.3 - Prob. 1AECh. 38.8 - Prob. 1BECh. 38.8 - Prob. 1CECh. 38.9 - Prob. 1DECh. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Would it ever be possible to balance a very sharp...Ch. 38 - Prob. 6Q
Ch. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10QCh. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 17QCh. 38 - Prob. 18QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46GPCh. 38 - Prob. 47GPCh. 38 - Prob. 48GPCh. 38 - Prob. 49GPCh. 38 - Prob. 50GPCh. 38 - Prob. 51GPCh. 38 - Prob. 52GPCh. 38 - Prob. 53GPCh. 38 - Prob. 54GPCh. 38 - Prob. 55GPCh. 38 - Prob. 56GPCh. 38 - Prob. 57GPCh. 38 - Prob. 58GPCh. 38 - Prob. 59GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the energy equivalent of 1 g of substance.arrow_forwardTwo plates, illustrated below, are at OV and 10000 V, respectively, and are separated by a distance 10 cm. A ball of mass 2 g and charge 8 µC is fired towards the positive plate with an initial speed of v=4.0 m/s and initial position 3 cm to the right of the left plate. OV 10,000 V IIIIIIIIIIII 10 cm ++++++ +++ A) Plot V as a function of distance between the two plates. Draw several equipotential lines on the schematic above. B) What is the magnitude of the electric field between the two plates? Please draw several vectors to indicate the direction of the E field. C) How far to the right does the charge travel? What prevents it from moving any further?arrow_forwardIf the potential difference found between the anode and the cathode were maintained constant, what will be (i) the exit velocity in the z direction, and (ii) the total displacement of the electron on the screen.arrow_forward
- .A neutral sodium atom has an ionization potential of 5.1 eV from its ground state.(1) What is the speed of a free electron that has just barely enough kinetic energy tocollisionally ionize a sodium atom in its ground state?(2) What is the speed of a free proton with just enough energy to collisionlly ionize thisatom?(3) What is the temperature of a gas in which the average electron kinetic energy is justbarely sufficient to ionize a sodium atom in its ground state?arrow_forwardUse Clausius-Mossotti equation to determine the polarizibility of atoms in the air molecules, where the number density of dry air is 2.504×1025 m-3. Assume the result for nitrogen atom and compute the relative displacement of nitrogen nucleus and electronic cloud at a field strength Em= 3×106 V/m.arrow_forwardAn unknown moving ion is confined in a OD nanomaterial in which all three dimensions are equals to 5 nm. Estimate with what accuracy its velocity and energy can be measured (given mass of the ion is 4.8×10 26 kg)?arrow_forward
- The velocity of electron in the first Bohr orbit of radius 0.5 A.U. is 2.24 x 106 m/s. Calculate the period of revolution of the electron in the same orbit.arrow_forwardChapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forwardProtons of energy 5.7 MeV are incident on a gold foil of thickness 4.4 x 10-6 m. What fraction of the incident protons is scattered at the following angles? (The density of gold is 19.3 g/cm³, and its molar mass is 197.0 g/mol. Give your answer in decimal notation, e.g., 0.05 for 1/20.) (a) greater than 90° (b) less than 5⁰arrow_forward
- (a) Show that the kinetic energy of a nonrelativistic particle can be written in terms of its momentum as KE =p2/2m. (b) Use the results of part (a) to find the minimum kinetic energy of a proton confined within a nucleus having a diameter of 1.0 × 10−15m.arrow_forwardIn a cathode-ray tube (CRT), an electron travels in a vacuum and enters a region between two "deflection" plates which have equal and opposite charges. The dimensions of each plate are L = 12 cm by d = 5 cm, and the gap between them ish = 2.5 mm. (Note: the diagram is not drawn to scale and the direction of the electric field may not be correct, depending on your randomization.) L During a 0.001 s interval while it is between the plates, the change of the momentum of the electron Ap is kg m/s. What is the electric field between the plates? Hint: remember the Momentum Principle (the relationship between Impulse and change in momentum.) E = N/C What is the charge (both magnitude and sign) of the upper plate? q = Additional Materials I eBookarrow_forwardConsider the following free particles : a 1-eV photon, a 1-MeV electron, and a 10-MeV proton. Which is moving the fastest? Slowest? Has the most momentum? The least momentum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning