Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 85P
In a region of space where gravirational forces can be neglected. a sphere is accelerated by a uniform light beam of intensity 6.0 mW/m2.The sphere is totally absorbing and has a radius of 2.0 µm and a uniform density of 5.0 × 103 kg/m3. What is the magnitude of the sphere’s acceleration due to the light?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a region of space where gravitational forces can be neglected, a sphere is accelerated by a uniform light beam of intensity 6.0 mW/m2.The sphere is totally absorbing and has a radius of 2.0 mm and a uniform density of 5.0 * 10^3 kg/m3.What is the magnitude of the sphere’s acceleration due to the light?
Please
In the figure, unpolarized light with an intensity of 24.0 W/m2 is sent into a system of four polarizing sheets with polarizing directions at angles θ1 = 40.0˚, θ2 = 20.0˚, θ3 = 20.0˚, and θ4 = 30.0˚, What is the intensity of the light that emerges from the system?
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Additional Science Textbook Solutions
Find more solutions based on key concepts
12. A speed skater accelerates from rest and then keeps skating at a constant speed. Draw a complete motion dia...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Whether the mass of a stretched rubber band will remain same is to be explained. Concept introduction: Every ma...
Living By Chemistry: First Edition Textbook
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
WHAT IF? Most prairies experience regular fires, typically every few years. If these disturbances were relativ...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardAn unpolarized beam of light (intensity I0) is moving in the x-direction. The light passes through three ideal polarizers whose transmission axes are (in order) at angles 0.0°, 48.0°, and 22.0° counterclockwise from the y-axis in the yz-plane. If the polarizer in the middle is removed, what is the intensity and polarization of the light transmitted by the last polarizer?arrow_forward
- A point source of light emits isotropically with a power of 200 W. What is the force due to the light on a totally absorbing sphere of radius 2.0 cm at a distance of 20 m from the source?arrow_forwardA 15.0 mV helium-neon laser emits a uniform beam of circular cross section with a diameter of 2.0 mm. Find a) the maximum electric field in the beam. b) the total energy contained in a 1.00 meter length of the beam. c) the momentum carried by a 1.00 meter length of the beam?arrow_forwardAn unpolarized beam of light with an intensity of 5000 W/m2 is incident on two ideal polarizing sheets. If the emerging light has an intensity 0.200 times the original intensity of the incident beam, what is the angle between the two polarizers?arrow_forward
- Suppose a plane-polarised light wave is travelling in the z direction, its electric field vector E is aligned with the x direction and its magnetic field vector H is aligned in the y direction.The plane of polarisation is Select one: The xy plane. The yz plane. The xz plane.arrow_forwardIn the figure, a beam of unpolarized light, with intensity 40 W/m2, is sent into a system of two polarizing sheets with polarizing directions at angles θ1 = 78˚ and θ2 = 90˚ to the y axis. What is the intensity of the light transmitted by the system?arrow_forwardTwo laser beams with wavelengths λ1 = 556 nm and λ2 = 604 nm are aimed at the same point. The electric field from each laser in the y-direction behaves as the function, Ei,y(x,t) = A(sin(2πfit - 2πx/λi) for i = 1 or 2, and they propagate at a speed of light c. Both fields have the same amplitude, A = 1 N/C. λ1 = 556 nmλ2 = 604 nm Find the value of the total electric field in the y-direction Ey, in newtons per coulomb, at a time of exactly one femtosecond (10-15 s) if the position the lasers is aimed at is exactly 100 nm away from each laser.arrow_forward
- A vertically polarized beam of light of intensity 100 W/m2 passes through two ideal polarizers. The transmission axis of the first polarizer makes an angle of 20.0° with the vertical, and the transmission axis of the second one makes an angle of 40.0° with the vertical. What is the intensity of the light after it has passes through both polarizers? O 51.8 W/m? O O W/m? O 78.0 W/m? 29.3 W/m2 44.2 W/m2arrow_forwardA beam of light with an intensity of 40.0 W/m2 and polarization parallel to the y-axis is sent into a system of two polarizing filters with transmission axes of 01 = 70.0° and 02 = 90.0° with respect to the y-axis. What is the intensity of the light transmitted by the two-filter system? y O 4.13 W/m2 O 2.88 W/m2 O 3.29 W/m2 O 3.82 W/m? O 4.63 W /m?arrow_forwardA beam of polarized light of intensity 60.0 W/m2 propagates in the +x-direction. The light is polarized in the +y-direction. The beam strikes an ideal polarizer whose plane is parallel to the yz-plane and has its polarizing axis at 25.0° clockwise from the y-direction. Then the beam that emerges from this polarizer strikes a second ideal polarizer whose plane is also parallel to the yz-plane but has its polarizing axis at 50.0° clockwise from the y-direction. Find the intensity of the light that emerges (a) from the first polarizer, (b) from the second polarizer, and (b) from the second polarizer if the first polarizer is removedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY